Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glow-in-the-Dark Millipede Says 'Stay Away'

27.09.2011
The world's only bioluminescent millipedes use their glow as a warning signal to nocturnal predators, a UA-led research team has discovered.

As night falls in certain mountain regions in California, a strange breed of creepy crawlies emerges from the soil: millipedes that glow in the dark. The reason behind the glowing secret has stumped biologists until now.

Paul Marek, a research associate in the University of Arizona's department of entomology and Center for Insect Science, and his team now provide the first evidence gained from field experiments of bioluminescence being used as a warning signal. They discovered that the nightly glow of millipedes belonging to the genus Motyxia helps the multi-legged invertebrates avoid attacks by predators.

The findings will be published in the Sept. 27 print edition of the journal Current Biology.

Biologists have discovered and described more than 12,000 species of millipedes, but the vast majority remains undiscovered and is thought to number around 100,000.

Just like all other millipedes, Motyxia are vegetarians, feeding mostly on decaying plant material, but in the course of adapting to a lifestyle primarily underground, they lost the ability to see.

"They spend the day burrowed beneath the soil and leaf material, but even though they are blind, they somehow sense when night falls and come to the surface to forage and mate and to go about their millipede business," said Marek, who conducted this work under the NIH Postdoctoral Excellence in Research and Training program in the labs of Wendy Moore, an assistant professor of entomology and curator of the UA Insect Collection and Dan Papaj, a professor of ecology and evolutionary biology at the UA.

Oozing toxic cyanide

"When they are disturbed, they ooze toxic cyanide and other foul-tasting chemicals from small pores running along the sides of their bodies as a defense mechanism," Marek explained. "Some millipede species that are active during the day display bright warning colors to announce their defenses to predators, but because Motyxia are out when it's dark, we hypothesized they use their greenish glow in place of a warning coloration."

Known as bioluminescence, the ability to glow in the dark is remarkably widespread in the animal kingdom. The most commonly known examples include fireflies, glowworms – which are in fact beetles – and animals inhabiting the pitch-black darkness of the deep oceans.

In some of those examples, bioluminescence is thought to help attract mates, send messages back and forth among members of the same species, or attract prey like in the case of the deep-sea angler fish, which dangles a glowing lure in front of its gaping mouth. Any small fish or other animal following the beacon's glow is gulped up as it approaches the invisible predator hiding in the darkness.

Marek and his co-workers hypothesized by using bioluminescence as a warning signal, luminescent millipedes would be attacked less than non-luminescent ones.

Science meets art: bugs of bronze

To test this hypothesis, Charity Hall, Marek's wife and a metalsmith, made a bronze cast of a millipede, which the team used to create molds to cast 300 fake millipedes in clay. Half of those they painted with an artificial, long-lasting glow-in-the-dark paint.

For the field experiment, the group took their clay millipede collection to Giant Sequoia National Monument in California, where they set them on the ground along a transect line, spaced 5 meters (16 feet) apart. Glowing and non-glowing individuals were distributed in random order to avoid sampling bias.

They then set out to collect real millipedes in the same general area.

"Motyxia are extremely common out there," Marek said. "If you sit there in a moonless night, the ground will look like the starry night sky up above, from all those millipedes glowing in the dark."

The next morning: carnage

The live millipedes were divided into two groups: One was covered with paint to conceal the natural glow, the other was left untreated. Just like with the clay models, the real millipedes were distributed along a different transect line, with glowing and non-glowing animals in random order.

"To make sure they wouldn't walk out of the experiment, we used a fly-fishing knot gently tied around their back segments to tether them to the ground," Marek explained.

The next morning, the researchers went to collect the live and clay millipedes and assess the results.

"It was just – carnage," Marek said. "We were really surprised at the predation rate on these millipedes. Overall, about one-third of them – both real and fake – had been attacked."

Four times as many non-glowing millipedes showed evidence of attacks compared to their glowing peers. Similarly, in the clay group, non-luminescent models were attacked twice as often than those that emitted the glow.

To learn more about what kinds of predators had nibbled on – or devoured – the study subjects, Marek took the clay models and the remains of the real millipedes to the rodent collection at the California Academy of Sciences and matched the strike marks with the teeth in rodent skulls. Combining those data with observations at the study site, the team concluded that the grasshopper mouse (Onychomys torridus) is one of the millipedes' most likely predators.

"Remarkably, most of the predation marks were localized to the head, even in the clay models," Marek said. "So somehow those predators were able to tell the head from the tail end and go for the head first, which is a behavior typically seen in vertebrate predators."

One of evolution's brightest moments

To get a better idea of how the ability to glow in the dark evolved in millipedes, the team sequenced selected gene regions and estimated their evolutionary history to pinpoint the origin of bioluminescence in millipedes.

Interestingly, a few of the species in the glowing genus Motyxia can switch their glow on and off. Marek and his co-workers measured glowing intensity of species in the genus using darkroom photography and traced the results on an evolutionary tree. They determined that the ability to glow evolved only once in millipedes and is restricted to a set of closely related species, all in the genus Motyxia.

"There are only three places on the planet where you can see glow-in-the-dark millipedes," Marek said. "The Santa Monica Mountains, the Tehachapi Mountains and the southern Sierra Nevada Mountains, all of which are in California."

The precise biochemical mechanism by which the millipedes achieve this feat is up for future research.

"For now, all that we know is they use a different mechanism than fireflies or glowworms," said Marek, "which use an enzymatic reaction. The millipedes have a photoprotein that is similar to the Green Fluorescent Protein of the jellyfish Aequorea victoria. It is thought to be activated by calcium and energy-rich compounds in the cell to create the glow."

The co-authors of the paper, "Bioluminescent aposematism in millipedes," are Daniel Papaj, a professor in the UA's department of ecology and evolutionary biology; Justin Yeager, a doctoral student at Tulane University; Sergio Molina, who is in the biology department at Pima Community College in Tucson, Ariz.; and Wendy Moore, an assistant professor in the UA's department of entomology and curator of the UA Insect Collection.

LINKS:
More information on the world's leggiest animals, including a video animation showing a millipede putting on the glow (http://www.apheloria.org/xfer/biolum_fade.mov), can be found on Paul Marek's website,

http://www.apheloria.org

CONTACTS:

Paul Marek
UA Department of Entomology
520-621-7124 (Office)
520-904-5884 (Cell)
paulemarek@gmail.com
Daniel Stolte
University Communications
The University of Arizona
520-626-4402
stolte@email.arizona.edu

Daniel Stolte | The University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>