Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming cycles threaten endangered primate species

28.10.2009
Two Penn State University researchers have carried out one of the first-ever analyses of the effects of global warming on endangered primates.

This innovative work by Graduate Student Ruscena Wiederholt and Associate Professor of Biology Eric Post examined how El Niño warming affected the abundance of four New World monkeys over decades. The research will be published on 28 October 2009 in the Royal Society journal Biology Letters, a fast-track journal of the Royal Society of London.

Wiederholt and Post decided to concentrate on the way the oscillating weather patterns directly and indirectly influence plants and animals in the tropics. Until the research by Wiederholt and Post, this intricate network of interacting factors had rarely been analyzed as a single system. "We know very little about how climate change and global warming are affecting primate species," explains Wiederholt. "Up to one third of primates species are threatened with extinction, so it is really crucial to understand how these changes in climate may be affecting their populations."

The scientists focused on the large-bodied monkeys of South America, which are highly threatened. Choosing one species from each of the four genera of Atelines, Wiederholt and Post examined abundance trends and dynamics in populations of the muriqui (Brachyteles hypoxanthus, formerly B. arachnoides) of Brazil, the woolly monkey (Lagothrix lagotricha) in Colombia, Geoffroy's spider monkey (Ateles geoffroyi), which was studied on Barro Colorado Island in Panama, and the red howler monkey (Alouatta seniculus) in Venezuela.

For each species, long-term research projects carried out by other teams over decades have documented the abundance and feeding patterns of these primates. By studying the different species, Wiederholt and Post hoped to highlight the importance of the response to changing climate conditions of the trees that provide the dietary resources for the monkeys. All the species live in social groups and spend most of their time in the trees of tropical forests, using their limbs and prehensile tails to move around or to suspend themselves from branches. The monkeys differ in the proportions of fruit, flowers, and leaves in their diets. Woolly monkeys and spider monkeys predominantly eat fruit, howler monkeys specialize in leaf-eating, and muriquis also eat leaves but consume more fruit than howlers. "Long-term studies like those we derived data from are incredibly valuable for illuminating effects of global warming," Post said. "Unfortunately for endangered species, such studies also are incredibly rare. We hope our results bring attention to the importance of maintaining long-term monitoring efforts."

The team hypothesized that the trees' response to the warming events might provide a crucial link between changes in climate and monkey abundance. To test their hypothesis, Wiederholt and Post needed to compare information on the monkey populations with data on fluctuations in food resources such as leaves, seeds, and fruits. Then, using statistical models, they investigated how food and abundance information related to annual temperature and rainfall information.

Detailed ecological information was not available on each of the forests in which the target species live, so the team used information from Barro Colorado Island -- a lowland, moist, tropical forest where Geoffroy's spider monkey was studied -- as a general indicator of what happened over time in each of the habitats. From Barro Colorado, the scientists knew the number of tree species that were fruiting and flowering each month during the years between 1987 and 2004. They also looked at the annual values of flower and seed production for 44 specific tree species with seeds that are spread by mammals.

To examine these factors on a regional and local scale, Wiederholt and Post used information on mean annual temperature, rainfall, and the length of the wet and dry seasons for the years between 1960 and 1990 in Venezuela, Brazil, Barro Colorado Island, and Colombiaavailable. They obtained these data from the Smithsonian Tropical Research Institute and from the Center for Climatic Research at the University of Delaware. "We expected to find a strong relationship between the large-scale climate and the population dynamics of these species," explains Wiederholt. "We also wanted to tease out which measures of vegetation-response to climatic conditions were most influential."

The scientists obtained large-scale climate data from the southern oscillation index (SOI), the El Niño-Southern Oscillation indices (ENSO3, 34, 4, and 12), and the Southern Hemisphere temperature-anomaly index, which are available from the National Aeronautics and Space Administration and the National Oceanic and Atmospheric Administration. The Joint Institute for the Study of Atmosphere and Ocean provided a rainfall anomaly index. The El Niño and La Niña phases of the El Niño Southern Oscillation (ENSO -- often called simply "El Niño") are the cycles of warm/dry and cool/wet periods in oceanic and atmospheric temperatures in the tropical Pacific region. These cycles often are associated with disruptive events in to central and northern South America, such as floods, droughts, or disturbances in fishing or agriculture.

The results of the team's analyses were spectacular. All four monkey species showed drops in abundance relating to large-scale climate fluctuations. Even though the monkey populations were separated by large distances, the three fruit-eating species had synchronous responses to large-scale warming. During El Niño warming events, trees produced more fruit than usual. Then, during the subsequent La Niña cooling events, the trees produced much less fruit, resulting in a local scarcity or even famine.

Some ecologists have speculated that high production of fruit during El Niño events may have been triggered by the increase in solar radiation, despite lower-than-usual rainfall. However, high productivity during an El Niño event might also use up the stored reserves of the trees, which would have difficulty recovering during the subsequent La Niña events, when weather was wet, cloudy, and cool. This mechanism would explain why the fruit-eating monkeys showed a delayed response to the El Niño events after a lag of one or two years.

Howler monkeys also showed declines with warm and dry El Niño events, but their population fall was out of sync with that of the fruit-eating species. The mechanism is not yet clear, but Wiederholt has some ideas. She notes, "Primate researchers have seen elevated adult female mortality and lowered birthrates among red howlers in drought years. Since leaf flush often occurs at the start of the wet season, a prolonged dry season might delay the availability of this resource for the howlers and perhaps cause them nutritional stress."

Warmer temperatures also may cause leaves -- the howlers' primary food -- to mature faster, which would accelerate the leaves' acquisition of toxins and other chemical defenses against monkeys. The factor that the scientists found was most influenced by changes in climate was the monthly maximum number of tree species that were fruiting. Climate changes also were highly correlated with the monthly maximum number of species that were flowering and with annual seed production. The length of the dry season also was highly correlated with annual flower production. Thus, vegetation responses to climatic conditions substantially altered the food resources available to primates, which in turn influenced the decline or rise in monkey abundance.

Global warming already has produced a rise of 0.74 degrees over the last century, and an additional increase of 1.8 to 4 degrees Celsius is anticipated over the next century. "El Niño events are expected to increase in frequency with global warming," explains Post. "This study suggests that the consequences of such intensification of ENSO could be devastating for several species of New World monkeys."

The researchers say that now, more than ever, quantitative studies that delineate the complex ecological links between climate, vegetation, and animal survival are urgently needed.

This study was funded by Penn State's Graduate Fellowship Program in a grant to Ruscena Wiederholt.

CONTACTS:
Ruscena Widerholt: (+1)814-280-8161, rpw143@psu.edu
Eric Post: (+1)814-777-0924 cell, esp10@psu.edu
Barbara Kennedy (PIO): (+1)814-863-4682, science@psu.edu

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>