Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global team identifies new genes behind severe childhood epilepsy

12.08.2013
Results lead to new insights into role of mutations in devastating infant condition

A large-scale international study on the genes involved in epilepsy has uncovered 25 new mutations on nine key genes behind a devastating form of the disorder during childhood. Among those were two genes never before associated with this form of epilepsy, one of which previously had been linked to autism and a rare neurological disorder, for which an effective therapy already has been developed.

The findings suggest a new direction for developing genome-wide diagnostic screens for newborns to identify who is at risk for epilepsy and, potentially, to develop precise therapies for the condition. The findings appear in the August 11, 2013 online issue of the journal Nature.

The results are the first to emerge from a set of epilepsy-genetics projects known as EPGP and Epi4K, which were launched by the National Institutes of Health in 2007 and 2012, respectively, and involve more than 40 institutions on three continents. While UC San Francisco and Duke University serve as the administrative hubs, the projects involve a team of nearly 150 scientists across 25 specialties, in the hopes of generating this type of advance on the intractable disease.

“The limitations of what we currently can do for epilepsy patients are completely overwhelming,” said Daniel Lowenstein, MD, a UCSF neuroscientist and renowned epilepsy expert who, along with Ruben Kuzniecky, MD, from New York University, is overseeing the Epilepsy Phenome/Genome Project (EPGP). “More than a third of our patients are not treatable with any medication, so the idea of finding specific drug targets, instead of a drug that just bathes the brain and may cause problems with normal brain function, is very appealing.”

The global team started with the most severe forms of the disorder, known as epileptic encephalopathies (EE), which affect roughly one in 2,000 children, often before their first birthdays. Many of these children also experience other severe disabilities, including autism or cognitive dysfunction. Whether the epilepsy contributes to those, or vice versa, is being addressed in a parallel study.

“We knew there was something happening that was unique to these kids, but we had no idea what that was,” said Elliott Sherr, MD, PhD, a UCSF physician-scientist who is the principal investigator of the Epi4K Epileptic Encephalopathy project and who developed this group of patients within EPGP. “In a common disease like cystic fibrosis, you’re likely to see more than one child in a family affected. In this case, it is very rare to have more than one person in the entire family with this condition.”

That lack of clear, inherited links to the disease led them to propose that the condition was being caused by de novo, or brand new, mutations on certain genes. They set out to test that hypothesis.

Searching for Mutations

The team identified children with two classic forms of EE – infantile spasms and Lennox-Gastaut Syndrome -- in which no other family member was affected. They excluded children who had identifiable causes of epilepsy, such as strokes at birth, which are a known risk for this group of disorders. Of the 4,000 patients whose genomes are being analyzed in the Epi4K, 264 children fit that description.

The Epi4K sequencing team, led by David Goldstein, PhD, at Duke, ran a genetic scan on the children and their parents, which they compared to thousands of people of similar heritage without epilepsy. They used a cutting-edge new technique called exome sequencing to focus on the exome – the 2 percent of our genetic code that represents active, protein-making genes. Those 25,000 genes are considered to be the code for what makes us unique, including disease mutations.

The genetic analysis revealed 439 new mutations in the children, with 181 of the children having at least one. Nine of the genes that hosted those mutations appeared in at least two children with EE and five of those had shown up in previous, smaller EE studies. Of the four others, two may have been coincidental, the researchers found. But two new genes never before associated with EE – known scientifically as GABRB3 and ALG13 – each appeared with less than a one-in-40-billion statistical chance (p = 4.1x10-10) of being connected to EE by coincidence.

The findings implicated GABRB3, for the first time, as a single-gene cause of EE, and offered the strongest evidence to date for the gene’s role in any form of epilepsy, Sherr said. Knowing this about GABRB3, which is also involved with Angelman’s Syndrome, also offers the possibility that children with mutations only in this gene might benefit from the existing therapy for Angelman’s. Another new gene, ALG13, is key to putting sugars on proteins, which points to a new way of thinking about the causes of and treatment for epilepsy.

‘The take-home is that a lot of these kids have genetic changes that are unique to them,” Sherr said. “Most of these genes have been implicated in these or other epilepsies – others were genes that have never been seen before – but many of the kids have one of these smoking guns.”

Team Science Leads to New Advances

Lowenstein said that in a disease this uncommon, that level of scientific accuracy could never have been achieved without a team of this size, which includes experts in pediatric neurology, molecular genetics, engineering, information technology and public health policy. The number of medical centers involved also enabled EPGP to identify enough patients to uncover real patterns in the data.

They did so in 11 months, from the time they conceived of the project to the submission of the paper in Nature, Lowenstein said. That’s unheard of in a clinical research project of this size and scale, which could easily take three years in an individual lab, if it were possible at all, he said.

As such, it is a perfect example of how large-scale data, collected across a broad team of both clinical and basic scientists, is uniquely able to identify the sources of intractable diseases. That notion is the core of the new field of precision medicine, which UCSF is working to advance.

"These promising results highlight the strength of supporting large, international research teams, devoted to studying the genetics behind highly complex neurological disorders," said Story Landis, PhD, director of NIH's National Institute of Neurological Disorders and Stroke (NINDS).

In a disease for which there currently are no medications available that target the molecular cause of the disorder, the team effort and first results are both tremendous steps in science, Lowenstein said The new knowledge could be used immediately to create an expanded diagnostic test for infants, to see whether they have any of these mutations, and to identify potential therapies for them. New treatments, though, are much farther off.

“This is a great start, but there is much left to do,” Lowenstein said. “One of the most fascinating and promising findings in this study is that many of the gene mutations affect molecules that are involved in a relatively limited number of cellular pathways. This suggests that it may be sufficient to target therapies at a limited set of pathways rather than every mutated protein in every patient.”

A full list of partnering organizations and EPGP/Epi4K researchers is available in the paper, which can be found at http://www.nature.com. The research was funded by grants from the National Institute of Neurological Disorders and Stroke (NS053998, NS077364, NS077274, NS077303, NS077276), Finding a Cure for Epilepsy and Seizures, and the Richard Thalheimer Philanthropic Fund.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Kristen Bole | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>