Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global genome effort seeks genetic roots of disease

01.11.2012
By decoding the genomes of more than 1,000 people whose homelands stretch from Africa and Asia to Europe and the Americas, scientists have compiled the largest and most detailed catalog yet of human genetic variation. The massive resource will help medical researchers find the genetic roots of rare and common diseases in populations worldwide.

The 1000 Genomes Project involved some 200 scientists at Washington University School of Medicine in St. Louis and other institutions. Results detailing the DNA variations of individuals from 14 ethnic groups are published Oct. 31 in the journal Nature. Eventually, the initiative will involve 2,500 individuals from 26 populations.


By decoding the genomes of more than 1,000 people whose homelands stretch from Africa and Asia to Europe and the Americas, scientists have compiled the largest and most detailed catalog yet of human genetic variation. The massive resource will help medical researchers find the genetic roots of rare and common diseases in populations worldwide.

Credit: National Human Genome Research Institute

"With this resource, researchers have a roadmap to search for the genetic origins of diseases in populations around the globe," says one of the study's co-principal investigators, Elaine Mardis, PhD, co-director of The Genome Institute at Washington University. "We estimate that each person carries up to several hundred rare DNA variants that could potentially contribute to disease. Now, scientists can investigate how detrimental particular rare variants are in different ethnic groups."

At the genetic level, any two people are more than 99 percent alike. But rare variants – those that occur with a frequency of 1 percent or less in a population – are thought to contribute to rare diseases as well as common conditions like cancer, heart disease and diabetes. Rare variants may also explain why some medications are not effective in certain people or cause side effects such as nausea, vomiting, insomnia and sometimes even heart problems or death.

Identifying rare variants across different populations is a major goal of the project. During the pilot phase of the effort, the researchers found that most rare variants differed from one population to another, and that they developed recently in human evolutionary history, after populations in Europe, Africa, Asia and the Americas diverged from a single group. The current study bears this out.

"This information is crucial and will improve our interpretation of individual genomes," says another of the study's co-principal investigators, Richard K. Wilson, PhD, director of The Genome Institute and a pioneer in cancer genome sequencing. "Now, if we want to study cancer in Mexican Americans or Japanese Americans, for example, we can do so in the context of their diverse geographic or ancestry-based genetic backgrounds."

Results of the new study are based on DNA sequencing of the following populations: Yoruba in Nigeria; Han Chinese in Beijing; Japanese in Tokyo; Utah residents with ancestry from northern and western Europe; Luhya in Kenya; people of African ancestry in the southwestern United States; Toscani in Italy; people of Mexican ancestry in Los Angeles; Southern Han Chinese in China; Iberian from Spain; British in England and Scotland; Finnish from Finland; Colombians in Columbia; and Puerto Rican in Puerto Rico.

All study participants submitted anonymous DNA samples and agreed to have their genetic data included in an online database. To catalog the variants, the researchers first sequenced the entire genome – all the DNA – of each individual in the study about five times. Surveying the genome in this way finds common DNA changes but misses many rare variants.

Then, to find rare variants, they repeatedly sequenced the small portion of the genome that contains genes – about 80 times for each participant to ensure accuracy – and they looked closely for single letter changes in the DNA sequence called SNPs (for single-nucleotide polymorphisms).

Using special tools developed to analyze and integrate the data, the researchers discovered a total of 38 million SNPs, including more than 99 percent of the variants with at frequency of at least one percent in the participants' DNA samples. They also found numerous structural variations, including 1.4 million short stretches of insertions or deletions and 14,000 large DNA deletions.

SNPs and structural variants can help explain an individual's susceptibility to disease, response to drugs or reaction to environmental factors such as air pollution or stress. Other studies have found an association between small insertions and deletions and diseases such as autism and schizophrenia.

The 1000 Genomes Project has generated massive amounts of genomic data. Simply recording the raw information took up some 180 terabytes of hard-drive space, enough to fill more than 40,000 DVDs. All of the information is freely available on the Internet through public databases.

"This tremendous resource builds on the knowledge of the Human Genome Project," says co-author George Weinstock, PhD, associate director of The Genome Institute. "Scientists and, ultimately, patients worldwide will benefit from the extensive effort to understand the shared features and geographic diversity of the human genome."

In addition to The Genome Institute, other research centers involved in the project include: the Human Genome Sequencing Center at the Baylor College of Medicine, Houston; The Broad Institute of MIT and Harvard University in Cambridge, Mass., the Wellcome Trust Sanger Institute in England; BGI Shenzhen in China; the Max Planck Institute for Molecular Genetics in Berlin; and Illumina, Inc., in San Diego.

The research is supported, in part, by a grant (U54HG3079) from the National Human Genome Research Institute at the National Institutes of Health (NIH) to The Genome Institute at Washington University in St. Louis. Other funding sources include: the Wellcome Trust; Medial Research Council; British Heart Foundation; National Basic Research Program of China; the National Natural Science Foundation of China; the Max Planck Society; Swiss National Science Foundation.

The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature. Oct. 31, 2012.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>