Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gliomas exploit Immune Cells of the Brain for Rapid Expansion

16.07.2009
Gliomas are among the most common and most malignant brain tumors. These tumors infiltrate normal brain tissue and grow very rapidly.

As a result, surgery can never completely remove the tumor. Now, the neurosurgeons Dr. Darko S. Markovic (Helios Klinikum Berlin-Buch) and Dr. Michael Synowitz (Charité) as well as Dr. Rainer Glass and Professor Helmut Kettenmann (both Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch), have been able to show that glioma cells exploit microglia, the immune cells of the brain, for their expansion (PNAS Early Edition)*.

Microglial cells are the immune cells of the brain/central nervous system. They constantly screen the brain environment. On their surface they use sensors to detect changes in their environment due to brain damage or infections. An important family of these sensors are Toll-like receptors (TLR).

However, microglia do not attack glioma cells. On the contrary: they support the growth of the tumor and, thus, make the disease worse. Together with researchers in Warsaw, Poland, Amsterdam, The Netherlands, and Bethesda, USA, the researchers in Berlin have been able to show how the immune cells promote the tumor growth.

Microglial cells are attracted toward the glioma cells and gather in and around the tumor in large numbers. Interestingly, gliomas consist of up to 30 per cent of microglia, especially at the tumor edge.

Gliomas release certain enzymes, metalloproteases, which digest the extracellular matrix, and also dissolve the ties between cells. However, the metalloproteases are produced and released as inactive precursor protein which need to be cleaved to be activated. This cleavage is accomplished by another enzyme, which is produced by the microglial cells.

This enzyme is anchored in the membrane and was therefore named membrane type 1 metalloprotease (MT1-MMP). MT1-MMP activates the metalloproteases which clear the way for the glioma cells and allows them to infiltrate normal brain tissue and expand very rapidly.

Normally, microglial cells do not produce MT1-MMP. However, the glioma cells manipulate the microglial cells by stimulating microglial TLR which trigger the expression of MT1-MMP.

The researchers could confirm their data from petri dish in mice. "Those mice, in which we had knocked out the MT1-MMP gene or a crucial gene for TLR signalling, did attract fewer microglial cells and the tumor grew much more slowly", explains Professor Kettenmann.

They could also demonstrate that MT1-MMP was present in tissue from glioma patients. Remarkably, the gliomas with high level of microglial MT1-MMP were also more aggressive. Moreover microglial cells were more abundant in tissue sample from the tumor edge as compared to the center of the tumor.

Glioma cells themselves do not produce MT1-MMP. However, when the researchers experimentally over expressed MT1-MMP in glioma cells, they died.

The researchers hope, that interfering with TLR receptors or their intracellular pathways might reduce the rapid expansion of glioma cells. Professor Kettenmann: "Microglia are a new target for glioma researchers."

* Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion
D. S. Markovica,b, K. Vinnakotaa, S. Chirasania, M. Synowitza,c, H. Ragueta, K. Stocka, M. Sliwad, S. Lehmanne, R. Ka? linf,N. van Rooijeng, K. Holmbeckh, F. L. Heppnerf, J. Kiwitb, V. Matyasha, S. Lehnardte, B. Kaminskad, R. Glassa,1,2, and H. Kettenmanna,1

aCellular Neuroscience, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; bDepartment of Neurosurgery, Helios Clinics, 13125 Berlin, Germany; cDepartments of Neurosurgery and fNeuropathology and eCecilie Vogt Clinic for Neurology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; dLaboratory of Transcription Regulation, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; gDepartment of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VU University Medical Center, 1081 BT Amsterdam, The Netherlands; And and hCraniofacial Skeletal Diseases Branch, Matrix Metalloproteinase Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/
http://www.cancer.gov/
http://www.neuroglia.de/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>