Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gliomas exploit Immune Cells of the Brain for Rapid Expansion

Gliomas are among the most common and most malignant brain tumors. These tumors infiltrate normal brain tissue and grow very rapidly.

As a result, surgery can never completely remove the tumor. Now, the neurosurgeons Dr. Darko S. Markovic (Helios Klinikum Berlin-Buch) and Dr. Michael Synowitz (Charité) as well as Dr. Rainer Glass and Professor Helmut Kettenmann (both Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch), have been able to show that glioma cells exploit microglia, the immune cells of the brain, for their expansion (PNAS Early Edition)*.

Microglial cells are the immune cells of the brain/central nervous system. They constantly screen the brain environment. On their surface they use sensors to detect changes in their environment due to brain damage or infections. An important family of these sensors are Toll-like receptors (TLR).

However, microglia do not attack glioma cells. On the contrary: they support the growth of the tumor and, thus, make the disease worse. Together with researchers in Warsaw, Poland, Amsterdam, The Netherlands, and Bethesda, USA, the researchers in Berlin have been able to show how the immune cells promote the tumor growth.

Microglial cells are attracted toward the glioma cells and gather in and around the tumor in large numbers. Interestingly, gliomas consist of up to 30 per cent of microglia, especially at the tumor edge.

Gliomas release certain enzymes, metalloproteases, which digest the extracellular matrix, and also dissolve the ties between cells. However, the metalloproteases are produced and released as inactive precursor protein which need to be cleaved to be activated. This cleavage is accomplished by another enzyme, which is produced by the microglial cells.

This enzyme is anchored in the membrane and was therefore named membrane type 1 metalloprotease (MT1-MMP). MT1-MMP activates the metalloproteases which clear the way for the glioma cells and allows them to infiltrate normal brain tissue and expand very rapidly.

Normally, microglial cells do not produce MT1-MMP. However, the glioma cells manipulate the microglial cells by stimulating microglial TLR which trigger the expression of MT1-MMP.

The researchers could confirm their data from petri dish in mice. "Those mice, in which we had knocked out the MT1-MMP gene or a crucial gene for TLR signalling, did attract fewer microglial cells and the tumor grew much more slowly", explains Professor Kettenmann.

They could also demonstrate that MT1-MMP was present in tissue from glioma patients. Remarkably, the gliomas with high level of microglial MT1-MMP were also more aggressive. Moreover microglial cells were more abundant in tissue sample from the tumor edge as compared to the center of the tumor.

Glioma cells themselves do not produce MT1-MMP. However, when the researchers experimentally over expressed MT1-MMP in glioma cells, they died.

The researchers hope, that interfering with TLR receptors or their intracellular pathways might reduce the rapid expansion of glioma cells. Professor Kettenmann: "Microglia are a new target for glioma researchers."

* Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion
D. S. Markovica,b, K. Vinnakotaa, S. Chirasania, M. Synowitza,c, H. Ragueta, K. Stocka, M. Sliwad, S. Lehmanne, R. Ka? linf,N. van Rooijeng, K. Holmbeckh, F. L. Heppnerf, J. Kiwitb, V. Matyasha, S. Lehnardte, B. Kaminskad, R. Glassa,1,2, and H. Kettenmanna,1

aCellular Neuroscience, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; bDepartment of Neurosurgery, Helios Clinics, 13125 Berlin, Germany; cDepartments of Neurosurgery and fNeuropathology and eCecilie Vogt Clinic for Neurology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; dLaboratory of Transcription Regulation, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; gDepartment of Molecular Cell Biology, Faculty of Medicine, Vrije Universiteit, VU University Medical Center, 1081 BT Amsterdam, The Netherlands; And and hCraniofacial Skeletal Diseases Branch, Matrix Metalloproteinase Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33

Barbara Bachtler | idw
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>