Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glass Sponges Inspire

14.11.2011
Hybrid material made of collagen fibers and silica as a possible substrate for bone tissue culture

As well as organic structures, mineral structures also play an important role in living organisms. You don’t even have to go as far as seashells or the artful silica scaffolds of diatoms; a glimpse into your own body will do. Our bones and teeth are made of the mineral hydroxyapatite.

Scientists try to imitate the processes of biomineralization in order to better repair such things as bones and teeth. A team led by Franklin R. Tay at the Georgia Health Sciences University (USA) and Ji-hua Chen at the Fourth Military Medical University (China) has now introduced a new approach in the journal Angewandte Chemie: the biomineralization of a collagen/silica hybrid material.

Biomineralization is a very complicated process that is not so easy to mimic.

The silicate precursors required for the synthesis of the cell walls of diatoms are in a stabilized form, which prevents their uncontrolled polymerization. Special proteins then control the polymerization to make the highly complex structures of the resulting scaffold. Researchers would also like to control biomineralization processes to repair damaged teeth or to make synthetic cartilage and bone tissue. In order to culture bones, scientists would like to seed osteoblasts (bone building cells) from the patient’s own body onto a substrate, where they would attach and multiply. This scaffolding would be implanted to help damaged bone, in cases of osteoporosis-induced or highly complicated fractures for example, to regenerate. Osteoblasts release collagen, calcium phosphate, and calcium carbonate as the basis for new bone material.

Collagen fibers would be an ideal substrate, but they are not solid enough for bone repair. The researchers once again turned to nature for inspiration: in glass sponges, a collagen matrix is one component of the silica scaffolding. Would it thus be possible to strengthen a collagen structure with silica (silicon dioxide)? Although many teams have previously failed in their attempts, the team led by Tay and Chen has now been successful.

They used collagen fibers as both a “mold” and a catalyst for the polymerization of the liquid phase of a silica precursor compound to make solid silica. The silica precursor is stabilized with choline to prevent an uncontrolled polymerization. This leaves enough time for the liquid precursor to fully infiltrate the space between the microfibrils of the collagen fibers before it polymerizes to form silica—one secret to the success of this new approach. After the polymerization the solid silica reflects the architecture determined by the collagen fibers. After drying, the original sponge-like, porous structure of the collagen fibers is maintained. In contrast to pure collagen, the scaffold of the hybrid compound is stable and could, the researchers hope, be used to repair bones.

Author: Franklin R. Tay, Georgia Health Sciences University, Augusta (USA), http://www.georgiahealth.edu/dentalmedicine/research/biomein/index.html
Title: Infiltration of Silica Inside Fibrillar Collagen
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201105114

Franklin R. Tay | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>