Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glass Sponges Inspire

14.11.2011
Hybrid material made of collagen fibers and silica as a possible substrate for bone tissue culture

As well as organic structures, mineral structures also play an important role in living organisms. You don’t even have to go as far as seashells or the artful silica scaffolds of diatoms; a glimpse into your own body will do. Our bones and teeth are made of the mineral hydroxyapatite.

Scientists try to imitate the processes of biomineralization in order to better repair such things as bones and teeth. A team led by Franklin R. Tay at the Georgia Health Sciences University (USA) and Ji-hua Chen at the Fourth Military Medical University (China) has now introduced a new approach in the journal Angewandte Chemie: the biomineralization of a collagen/silica hybrid material.

Biomineralization is a very complicated process that is not so easy to mimic.

The silicate precursors required for the synthesis of the cell walls of diatoms are in a stabilized form, which prevents their uncontrolled polymerization. Special proteins then control the polymerization to make the highly complex structures of the resulting scaffold. Researchers would also like to control biomineralization processes to repair damaged teeth or to make synthetic cartilage and bone tissue. In order to culture bones, scientists would like to seed osteoblasts (bone building cells) from the patient’s own body onto a substrate, where they would attach and multiply. This scaffolding would be implanted to help damaged bone, in cases of osteoporosis-induced or highly complicated fractures for example, to regenerate. Osteoblasts release collagen, calcium phosphate, and calcium carbonate as the basis for new bone material.

Collagen fibers would be an ideal substrate, but they are not solid enough for bone repair. The researchers once again turned to nature for inspiration: in glass sponges, a collagen matrix is one component of the silica scaffolding. Would it thus be possible to strengthen a collagen structure with silica (silicon dioxide)? Although many teams have previously failed in their attempts, the team led by Tay and Chen has now been successful.

They used collagen fibers as both a “mold” and a catalyst for the polymerization of the liquid phase of a silica precursor compound to make solid silica. The silica precursor is stabilized with choline to prevent an uncontrolled polymerization. This leaves enough time for the liquid precursor to fully infiltrate the space between the microfibrils of the collagen fibers before it polymerizes to form silica—one secret to the success of this new approach. After the polymerization the solid silica reflects the architecture determined by the collagen fibers. After drying, the original sponge-like, porous structure of the collagen fibers is maintained. In contrast to pure collagen, the scaffold of the hybrid compound is stable and could, the researchers hope, be used to repair bones.

Author: Franklin R. Tay, Georgia Health Sciences University, Augusta (USA), http://www.georgiahealth.edu/dentalmedicine/research/biomein/index.html
Title: Infiltration of Silica Inside Fibrillar Collagen
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201105114

Franklin R. Tay | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>