Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists reveal that fat synthesizing enzyme is key to healthy skin and hair

16.02.2009
DGAT1 regulates retinoic acid

Scientists at the Gladstone Institutes of Cardiovascular Disease (GICD) have found that an enzyme associated with the synthesis of fat in the body is also an element in healthy skin and hair.

The enzyme is acyl CoA:diacylglycerol acyltransferase 1 or DGAT1. Mice that lack DGAT1 have many interesting characteristics. For example, they are lean, resistant to diet-induced obesity, are more sensitive to insulin and leptin, and have abnormalities in mammary gland development and skin.

When Gladstone researchers in the laboratory of Robert V. Farese, Jr. used genetic engineering to delete the enzyme in mice, they found that lack of DGAT1 caused levels of retinoic acid (RA) to be greatly increased in skin and resulted in the loss of hair. Their findings were reported in The Journal of Biological Chemistry.

"For some time, we have been studying the enzymes that make triglycerides," said Robert V. Farese, Jr., senior investigator and senior author on the study. "We found that one of these enzymes is a major regulator of retinoic acid actions in the skin."

RA, which comes from vitamin A (retinol) has been used to treat skin disorders, such as acne and psoriasis, and certain cancers, but it is fairly toxic and must be carefully controlled.

In mice without DGAT1, the skin was very sensitive to retinol. The loss of DGAT1 also caused alopecia, or hair loss. Both of these effects could be prevented by depriving the mice of a source of retinol in their diet. It turns out that DGAT1 can convert retinol to a relatively inert storage form. Without DGAT1, this ability is lost, and any excess retinol in the skin can be converted to RA.

"Our results show that DGAT1 is an important component for controlling retinoic acid levels in the skin of mice," said Michelle Shih, the lead author on the study. "These findings may have implications for the treatment of human skin or hair disorders."

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>