Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gladstone scientists identify strategies to protect new brain cells against Alzheimer's disease

Reversing abnormal brain activity in Alzheimer models improves development of new nerve cells born in adult brains

Stimulating the growth of new neurons to replace those lost in Alzheimer's disease (AD) is an intriguing therapeutic possibility. But will the factors that cause AD allow the new neurons to thrive and function normally? Scientists at the Gladstone Institute of Neurological Disease (GIND) have discovered that two main causes of AD amyloid-beta (Aâ) peptides and apolipoprotein E4 (apoE4) impair the growth of new neurons born in adult brains.

What is more, they have identified drug treatments that can normalize the development of these cells even in the presence of Aâ or apoE4. The findings are described in two separate papers published in the current issue of Cell Stem Cell.

Although it had long been assumed that neurons cannot be renewed, it is now well established that new neurons are generated throughout the lives of mammals. One brain region in which new neurons are born in adults, the hippocampus, is involved in learning and memory and affected severely by Alzheimer's disease.

GIND investigator Li Gan, PhD, and her collaborators studied the development of neurons born in the hippocampus of adult mice genetically engineered to produce high levels of human Aâ in the brain. Surprisingly, Aâ initially accelerated the development of newborn neurons but then profoundly impaired their maturation at later stages of development.

"Interestingly," Dr. Gan said, "we were able to protect the newborn neurons and ensure their normal development with drugs that counteract Aâ-induced abnormalities in neural network activity. It is possible that these drugs could support the development of neurons from stem cells even in the hostile environment of the AD brain."

In a complementary study, GIND investigator Yadong Huang, MD, PhD and his team focused on apoE4, the major genetic risk factor for AD. The team used genetically engineered mice to study the effects of different human apoE variants on the maturation of neural stem cells or progenitor cells, from which new neurons develop in the adult brain. They found that apoE4 also impairs the development of new neurons in the hippocampus and identified drug treatments that could block these detrimental effects.

"Our findings suggest that apoE4 inhibits the development of newborn neurons by impairing specific signaling pathways and that boosting these pathways with drugs may be of therapeutic benefit," said Dr. Huang. "It might allow us to encourage the development of new neurons from stem cells to replace those lost in apoE4 carriers with AD."

"Although stem cell therapy for AD is still a long ways off, these studies have identified strategies to overcome major obstacles in the path towards this goal," said GIND Director Lennart Mucke, MD, who coauthored one of the studies. "They clearly demonstrate that drugs can be used to improve the development of newborn neurons in memory centers of the adult brain, even in the presence of toxic factors widely presumed to cause AD."

Dr. Gan's research was supported by the J. David Gladstone Institutes and the L.K.Whittier Foundation. Binggui Sun, Brian Halabisky, Yungui Zhou, Jorge Palop, Guiqiu Yu, and Lennart Mucke also contributed to this research. Dr. Huang's research was supported by the J. David Gladstone Institutes, the California Institute for Regenerative Medicine, and the National Institutes of Health. Gang Li, Nga Bien-Ly, Yaisa Andrews-Zwilling, Aubrey Bernardo, Karen Ring, Brian Halabisky, Changhui Deng, and Robert W. Mahley also contributed to this research.

Dr. Gan's and Dr. Huang's primary affiliations are with the Gladstone Institute of Neurological Disease where their laboratories are located and all of their research is conducted. Dr. Gan is also Assistant Professor of Neurology and Dr. Huang is Associate Professor of Pathology and Neurology at the University of California, San Francisco.

In addition to his primary affiliation as Director of the Gladstone Institute of Neurological Disease, Dr. Mucke is the Joseph B. Martin Distinguished Professor of Neuroscience and Professor of Neurology at the University of California, San Francisco.

About the Gladstone Institutes

The Gladstone Institutes is a nonprofit, independent research and educational institution, consisting of the Gladstone Institute of Cardiovascular Disease, the Gladstone Institute of Virology and Immunology and the Gladstone Institute of Neurological Disease. Independent in its governance, finances and research programs, Gladstone shares a close affiliation with UCSF through its faculty, who hold joint UCSF appointments.

Valerie Tucker | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>