Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify strategies to protect new brain cells against Alzheimer's disease

04.12.2009
Reversing abnormal brain activity in Alzheimer models improves development of new nerve cells born in adult brains

Stimulating the growth of new neurons to replace those lost in Alzheimer's disease (AD) is an intriguing therapeutic possibility. But will the factors that cause AD allow the new neurons to thrive and function normally? Scientists at the Gladstone Institute of Neurological Disease (GIND) have discovered that two main causes of AD amyloid-beta (Aâ) peptides and apolipoprotein E4 (apoE4) impair the growth of new neurons born in adult brains.

What is more, they have identified drug treatments that can normalize the development of these cells even in the presence of Aâ or apoE4. The findings are described in two separate papers published in the current issue of Cell Stem Cell.

Although it had long been assumed that neurons cannot be renewed, it is now well established that new neurons are generated throughout the lives of mammals. One brain region in which new neurons are born in adults, the hippocampus, is involved in learning and memory and affected severely by Alzheimer's disease.

GIND investigator Li Gan, PhD, and her collaborators studied the development of neurons born in the hippocampus of adult mice genetically engineered to produce high levels of human Aâ in the brain. Surprisingly, Aâ initially accelerated the development of newborn neurons but then profoundly impaired their maturation at later stages of development.

"Interestingly," Dr. Gan said, "we were able to protect the newborn neurons and ensure their normal development with drugs that counteract Aâ-induced abnormalities in neural network activity. It is possible that these drugs could support the development of neurons from stem cells even in the hostile environment of the AD brain."

In a complementary study, GIND investigator Yadong Huang, MD, PhD and his team focused on apoE4, the major genetic risk factor for AD. The team used genetically engineered mice to study the effects of different human apoE variants on the maturation of neural stem cells or progenitor cells, from which new neurons develop in the adult brain. They found that apoE4 also impairs the development of new neurons in the hippocampus and identified drug treatments that could block these detrimental effects.

"Our findings suggest that apoE4 inhibits the development of newborn neurons by impairing specific signaling pathways and that boosting these pathways with drugs may be of therapeutic benefit," said Dr. Huang. "It might allow us to encourage the development of new neurons from stem cells to replace those lost in apoE4 carriers with AD."

"Although stem cell therapy for AD is still a long ways off, these studies have identified strategies to overcome major obstacles in the path towards this goal," said GIND Director Lennart Mucke, MD, who coauthored one of the studies. "They clearly demonstrate that drugs can be used to improve the development of newborn neurons in memory centers of the adult brain, even in the presence of toxic factors widely presumed to cause AD."

Dr. Gan's research was supported by the J. David Gladstone Institutes and the L.K.Whittier Foundation. Binggui Sun, Brian Halabisky, Yungui Zhou, Jorge Palop, Guiqiu Yu, and Lennart Mucke also contributed to this research. Dr. Huang's research was supported by the J. David Gladstone Institutes, the California Institute for Regenerative Medicine, and the National Institutes of Health. Gang Li, Nga Bien-Ly, Yaisa Andrews-Zwilling, Aubrey Bernardo, Karen Ring, Brian Halabisky, Changhui Deng, and Robert W. Mahley also contributed to this research.

Dr. Gan's and Dr. Huang's primary affiliations are with the Gladstone Institute of Neurological Disease where their laboratories are located and all of their research is conducted. Dr. Gan is also Assistant Professor of Neurology and Dr. Huang is Associate Professor of Pathology and Neurology at the University of California, San Francisco.

In addition to his primary affiliation as Director of the Gladstone Institute of Neurological Disease, Dr. Mucke is the Joseph B. Martin Distinguished Professor of Neuroscience and Professor of Neurology at the University of California, San Francisco.

About the Gladstone Institutes

The Gladstone Institutes is a nonprofit, independent research and educational institution, consisting of the Gladstone Institute of Cardiovascular Disease, the Gladstone Institute of Virology and Immunology and the Gladstone Institute of Neurological Disease. Independent in its governance, finances and research programs, Gladstone shares a close affiliation with UCSF through its faculty, who hold joint UCSF appointments.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

Liver Cancer: Lipid Synthesis Promotes Tumor Formation

12.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>