Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify single microRNA that controls blood vessel development

13.08.2008
Provides potential therapeutic target for a number of diseases

Scientists from the Gladstone Institute of Cardiovascular Disease (GICD) and UCSF have identified a key regulatory factor that controls development of the human vascular system, the extensive network of arteries, veins, and capillaries that allow blood to reach all tissues and organs.

The research, published in the latest issue of Developmental Cell, may offer clues to potential therapeutic targets for a wide variety of diseases, such as heart disease or cancer, that are impacted by or affect the vascular system.

Researchers in laboratory of GICD Director Deepak Srivastava, MD, found that microRNA (miR-126), a tiny RNA molecule, is intimately involved in the response of blood vessels to angiogenic signals. Angiogenesis, the process of vascular development, is a tightly regulated and well-studied process.A cascade of genes orchestrate a series of events leading to formation of blood vessels in an embryo.

"Some of these same gene regulatory networks are re-activated in the adult to direct the growth of new blood vessels" said Jason Fish, PhD, lead author of the study. "This can be beneficial, as in the case of a heart attack."

Blood vessel formation can also contribute to disease in settings like cancer, where vessels feed a growing tumor.

"Finding that a single factor regulates a large part of the angiogenic process creates a significant target for therapeutic development for any disease involving the vascular system," said Dr. Srivastava. "The next step is to find ways to modify this microRNA in the setting of disease and test its ability to alter the disease process."

Researchers examined cells, called endothelial cells, that line the lumen or inside of blood vessels. Once the vascular endothelial cells adopt their fate during development, they come together to form cord-like structures that are remodeled to become lumenized blood vessels. In adults, angiogenic signals, such as vascular endothelial growth factor (VEGF), activate endothelial cells and cause them to form new blood vessels. Individual microRNAs, which titrate the level of specific proteins generated by the cell, were not previously known to affect VEGF signaling or regulate angiogenesis.

The team used three model systems. First, they looked for microRNAs that were enriched in endothelial cells from mouse embryonic stem (ES) cells. They found that miR-126 was the most abundant in and most specific for endothelial cells. They next investigated the function of miR-126 in cultured human endothelial cells and found that this microRNA was involved in the structure, migration, proliferation and survival of endothelial cells. Third, they turned to the zebrafish system to investigate the in vivo function of miR-126 for three reasons. (1) It is a tractable system for perturbing microRNA levels and examining the consequences in a live organism. (2) The developing fish does not require a functioning cardiovascular system to survive through the initial stages of development. (3) The embryos are transparent and can be easily and directly visualized as they are developing. Loss of miR-126 function did not affect the initial patterning of the vascular network, but blood vessels subsequently collapsed and considerable internal bleeding occurred, illustrating the requirement of miR-126 for normal vessel formation and maintenance.

Researchers also found that miR-126 regulated endothelial responses to angiogenic signals by regulating several components of the VEGF pathway, which is important during development of blood vessels and is required for their maintenance. miR-126 repressed the actions of the Sprouty-related protein, SPRED1, and phosphoinositol-3 kinase regulatory subunit 2 both negative regulators of VEGF signals.

They replicated the effects of the loss of miR-126 by increasing expression of Spred1 or inhibiting VEGF signaling. Thus, miR-126 normally promotes vessel formation and stability by "repressing the repressors" of VEGF signaling. Since inhibiting VEGF signaling has been a major target of modern cancer therapies, regulating miR-126 represents an additional approach to regulate blood vessel formation in such diseases.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>