Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify single microRNA that controls blood vessel development

13.08.2008
Provides potential therapeutic target for a number of diseases

Scientists from the Gladstone Institute of Cardiovascular Disease (GICD) and UCSF have identified a key regulatory factor that controls development of the human vascular system, the extensive network of arteries, veins, and capillaries that allow blood to reach all tissues and organs.

The research, published in the latest issue of Developmental Cell, may offer clues to potential therapeutic targets for a wide variety of diseases, such as heart disease or cancer, that are impacted by or affect the vascular system.

Researchers in laboratory of GICD Director Deepak Srivastava, MD, found that microRNA (miR-126), a tiny RNA molecule, is intimately involved in the response of blood vessels to angiogenic signals. Angiogenesis, the process of vascular development, is a tightly regulated and well-studied process.A cascade of genes orchestrate a series of events leading to formation of blood vessels in an embryo.

"Some of these same gene regulatory networks are re-activated in the adult to direct the growth of new blood vessels" said Jason Fish, PhD, lead author of the study. "This can be beneficial, as in the case of a heart attack."

Blood vessel formation can also contribute to disease in settings like cancer, where vessels feed a growing tumor.

"Finding that a single factor regulates a large part of the angiogenic process creates a significant target for therapeutic development for any disease involving the vascular system," said Dr. Srivastava. "The next step is to find ways to modify this microRNA in the setting of disease and test its ability to alter the disease process."

Researchers examined cells, called endothelial cells, that line the lumen or inside of blood vessels. Once the vascular endothelial cells adopt their fate during development, they come together to form cord-like structures that are remodeled to become lumenized blood vessels. In adults, angiogenic signals, such as vascular endothelial growth factor (VEGF), activate endothelial cells and cause them to form new blood vessels. Individual microRNAs, which titrate the level of specific proteins generated by the cell, were not previously known to affect VEGF signaling or regulate angiogenesis.

The team used three model systems. First, they looked for microRNAs that were enriched in endothelial cells from mouse embryonic stem (ES) cells. They found that miR-126 was the most abundant in and most specific for endothelial cells. They next investigated the function of miR-126 in cultured human endothelial cells and found that this microRNA was involved in the structure, migration, proliferation and survival of endothelial cells. Third, they turned to the zebrafish system to investigate the in vivo function of miR-126 for three reasons. (1) It is a tractable system for perturbing microRNA levels and examining the consequences in a live organism. (2) The developing fish does not require a functioning cardiovascular system to survive through the initial stages of development. (3) The embryos are transparent and can be easily and directly visualized as they are developing. Loss of miR-126 function did not affect the initial patterning of the vascular network, but blood vessels subsequently collapsed and considerable internal bleeding occurred, illustrating the requirement of miR-126 for normal vessel formation and maintenance.

Researchers also found that miR-126 regulated endothelial responses to angiogenic signals by regulating several components of the VEGF pathway, which is important during development of blood vessels and is required for their maintenance. miR-126 repressed the actions of the Sprouty-related protein, SPRED1, and phosphoinositol-3 kinase regulatory subunit 2 both negative regulators of VEGF signals.

They replicated the effects of the loss of miR-126 by increasing expression of Spred1 or inhibiting VEGF signaling. Thus, miR-126 normally promotes vessel formation and stability by "repressing the repressors" of VEGF signaling. Since inhibiting VEGF signaling has been a major target of modern cancer therapies, regulating miR-126 represents an additional approach to regulate blood vessel formation in such diseases.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>