Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone Scientists identify key mechanism involved in Type 2 diabetes

29.03.2012
Findings may lead to new strategies to address insulin resistance

Scientists at the Gladstone Institutes have discovered a key protein that regulates insulin resistance—the diminished ability of cells to respond to the action of insulin and which sets the stage for the development of the most common form of diabetes. This breakthrough points to a new way to potentially treat or forestall type 2 diabetes, a rapidly growing global health problem.

In a paper being published online this week in the Proceedings of the National Academy of Sciences, researchers in the laboratory of Gladstone Investigator Katerina Akassoglou, PhD, describe an unexpected role of the p75 neurotrophin receptor in controlling how the body processes sugar. Called p75NTR, this receptor protein is usually associated with functions in neurons.

"We identified that p75NTR is a unique player in glucose metabolism," said Dr. Akassoglou, who is also an associate professor of neurology at the University of California, San Francisco, with which Gladstone is affiliated. "Therapies targeted at p75NTR may represent a new therapeutic approach for diabetes."

The pancreas makes a hormone called insulin that processes glucose, moving it from the bloodstream into the body's cells where it is used for energy. Insulin resistance is a key feature of Type 2 diabetes, in which glucose builds up in the bloodstream and the body's cells are unable to function properly. According to the Centers for Disease Control and Prevention, more than 20 million Americans have type 2 diabetes.

"Type 2 diabetes has become a very serious health problem and it is increasing at an alarming rate," said Lennart Mucke, MD, who directs the institute in which the research was conducted. "These findings provide an important new avenue for developing better therapies to combat this deadly disease—the seventh leading cause of death in the United States."

Complex signaling interactions between several different types of tissue—including fat, liver, muscle and brain—regulate glucose metabolism. Because p75NTR is found in fat and muscle tissue and participates in many important functions in the cell, Gladstone scientists hypothesized that p75NTR might also help to regulate glucose metabolism.

To study this, the researchers used mice that lacked the genes for p75NTR. They compared these mice to normal mice and discovered that those lacking p75NTR were more responsive to insulin when fed a normal diet. Second, they used some molecular biology tricks to block the action of the p75NTR protein in fat cells. This also resulted in increased glucose absorption in response to insulin. In contrast, when they caused the fat cells to make more p75NTR, glucose absorption was reduced. Additionally, the researchers found that another important regulatory molecule, Rab5, played a key role in p75NTR's impact on metabolism.

"Importantly, regulation by p75NTR enhanced insulin's effectiveness in normal lean mice on a normal diet," said Bernat Baeza-Raja, PhD, postdoctoral fellow and lead author of the study. "Because these mice already process glucose efficiently, the actions of p75NTR on glucose transport indicate a direct role of this protein in the regulation of glucose metabolism."

"Our studies of p75NTR's unanticipated role in regulating glucose metabolism suggest a new target for drug therapies," said Dr. Akassoglou. "Future work is needed to test whether this finding may translate into a potential treatment."

This study was a collaborative work between scientists at Gladstone, the University of California, San Diego (UCSD), the University of Michigan and the University of Houston. Other scientists who participated in this research at Gladstone include Natacha Le Moan, PhD, Christian Schachtrup, PhD, Dimitrios Davalos, PhD, and Eirini Vagena. Jerrold Olefsky, PhD, and Pingping Li, PhD, at UCSD were co-senior and co-first authors, respectively. Funding was provided by a variety of sources, including the National Institutes of Health, the University of California San Francisco Liver Center and Diabetes and Endocrinology Center and the R. A. Welch Foundation.

About the Gladstone Institutes

Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral and neurological diseases. Gladstone is affiliated with the University of California, San Francisco.

Diane Schrick | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>