Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify key factors in heart cell creation

28.04.2009
Sequence of transcription factors may drive proces to repair damaged hearts

Scientists at the Gladstone Institute of Cardiovascular Disease have identified for the first time key genetic factors that drive the process of generating new heart cells. The discovery, reported in the current issue of the journal Nature, provides important new directions on how stem cells may be used to repair damaged hearts.

For decades, scientists were unable to identify a single factor that could turn nonmuscle cells into beating heart cells. Using a clever approach, the research team led by Benoit Bruneau, Ph.D., found that a combination of three genes could do the trick. This is the first time any combination of factors has been found to activate cardiac differentiation in mammalian cells or tissues.

"The heart has very little regenerative capacity after it has been damaged," said Dr. Bruneau. "With heart disease the leading cause of death in the Western world, this is a significant first step in understanding how we might create new cells to repair a damaged heart."

Two of the three genes encode proteins called transcription factors, which are master regulators that bind to DNA and determine which genes get activated or shut off. The two transcription factors, GATA4 and TBX5, cause human heart disease when mutated and also cooperate with each other to control other genes. When Dr. Bruneau and postdoctoral fellow Jun K. Takeuchi added different combinations of transcription factors to mouse cells, these two seemed important for pushing cells into heart cells—but they were not enough.

"When we finally identified the key factor that could work with GATA4 and TBX5 to turn cells into beating heart cells, it was somewhat of a surprise to us," said Dr. Bruneau.

The surprising factor was a cardiac-specific protein called BAF60c, which helps determine whether transcription factors like GATA4 and TBX5 can even gain access to the DNA regions they were supposed to turn on or off. "Our previous studies had shown that chromatin remodeling complexes were important," said Dr. Bruneau. "Mice with lower levels of these complexes have severe heart defects and defective cardiac differentiation. These observations prompted us to look at Baf60c in heart differentiation."

The effect was dramatic. Addition of the three factors directed differentiation of mouse mesoderm, which normally has the potential to make bone, blood, muscle, heart, and other tissues, specifically into cardiac muscle cells (cardiomyocytes) that beat rhythmically, just like normal heart cells. In fact, even cells that normally contribute to the placenta could be induced to transform into beating cardiomyocytes.

"Together, these factors give us a potent mechanism to control cellular differentiation," said Dr. Bruneau. "This knowledge may help us to understand how to reprogram new cardiomyocytes for therapeutic purposes."

The research was supported by the Human Frontiers Science Program, MEXT, Mitsubishi Foundation, the National Institutes of Health, and William H. Younger, Jr.

About the Gladstone Institutes

The J. David Gladstone Institutes, an independent, nonprofit biomedical research organization, affiliated with the University of California, San Francisco, is dedicated to the health and welfare of humankind through research into the causes and prevention of some of the world's most devastating diseases. Gladstone is comprised of the Gladstone Institute of Cardiovascular Disease, the Gladstone Institute of Virology and Immunology and the Gladstone Institute of Neurological Disease.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>