Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify genetic link that may neutralize HIV

08.09.2008
Apobec3 Gene controls antibody response to retrovirus

Scientists from the Gladstone Institute of Virology and Immunology (GIVI) and the National Institutes of Allergy and Infectious Diseases (NIAID) have identified a gene that may influence the production of antibodies that neutralize HIV.

This new information will likely spur a new approach for making an HIV vaccine that elicits neutralizing antibodies. Neutralizing antibodies, once produced in the host, can attack and checkmate an infecting virus. The research was reported in the September 5 issue of Science.

Scientists have been striving in vain to stimulate strong protective antibodies with an HIV vaccine for years because these antibodies hold great promise for controlling HIV infection in humans. HIV is a type of virus called a "retrovirus," which copies its RNA genetic material into DNA and incorporates it into the DNA of its host.

In 1978, researchers at the National Institutes of Health (NIH) studying a similar retrovirus in mice discovered a gene called Rfv3 that influenced the production of neutralizing antibodies that allowed the animals to recover. By 1999, they had narrowed the location of Rfv3 to a relatively small region on mouse chromosome 15, but that region contained more than 60 genes. The laboratory of GIVI Director Warner C. Greene and a team of scientists from NIAID now demonstrate that Rfv3 is Apobec3, an innate immunity gene with antiretroviral activity.

"This newfound link between Apobec3 and the production of neutralizing antibodies came as a complete surprise," said Dr. Greene, senior author on the paper.

While the studies involved a different retrovirus infecting mice, the findings may extend to HIV. HIV uses one of its genes, Vif, to specifically disable human Apobec3 proteins and HIV-infected patients rarely make broadly neutralizing antibodies against this virus. This new study raises the possibility that drugs or vaccines that interfere with Vif might allow humans to naturally make better neutralizing antibody responses against HIV.

"We now have a host factor needed for the production of neutralizing antibodies that HIV targets and destroys," said Gladstone scientist Mario Santiago, PhD. "This offers a fresh perspective on how to strengthen this arm of the immune response against HIV, with direct implications for immunotherapy and vaccine development."

The scientists conducted a series of genetic experiments by mating mice with different Rfv3 and Apobec3 profiles. The researchers demonstrated that Apobec3, like Rfv3, contributes to the early control of retroviral infection in mice, and also influences specific retroviral antibody responses. In addition, they discovered that Rfv3 susceptible mouse strains that fail to make antibody responses have a natural defect in Apobec3. These results provide convincing evidence that Rfv3 and Apobec3 are the same gene.

"We set out to solve a 30-year old mystery in retrovirus biology and in the process made a discovery that might impact future development of HIV vaccines. Science really is full of unexpected twists and turns," said Dr. Greene.

The link between Apobec3 and neutralizing antibody responses becomes even more tantalizing in view of other recent studies of people who somehow resist HIV infection despite years of frequent exposure to the virus. These individuals produce a particular type of antibody recognizing the virus and genetic mapping studies of their resistance points to a chromosomal region where the human Apobec3 genes are clustered.

The research group is now poised to investigate Apobec3 differences in these individuals and is currently screening for compounds that would rescue Apobec3 function during HIV infection.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu
http://www.ucsf.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>