Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify genetic link that may neutralize HIV

08.09.2008
Apobec3 Gene controls antibody response to retrovirus

Scientists from the Gladstone Institute of Virology and Immunology (GIVI) and the National Institutes of Allergy and Infectious Diseases (NIAID) have identified a gene that may influence the production of antibodies that neutralize HIV.

This new information will likely spur a new approach for making an HIV vaccine that elicits neutralizing antibodies. Neutralizing antibodies, once produced in the host, can attack and checkmate an infecting virus. The research was reported in the September 5 issue of Science.

Scientists have been striving in vain to stimulate strong protective antibodies with an HIV vaccine for years because these antibodies hold great promise for controlling HIV infection in humans. HIV is a type of virus called a "retrovirus," which copies its RNA genetic material into DNA and incorporates it into the DNA of its host.

In 1978, researchers at the National Institutes of Health (NIH) studying a similar retrovirus in mice discovered a gene called Rfv3 that influenced the production of neutralizing antibodies that allowed the animals to recover. By 1999, they had narrowed the location of Rfv3 to a relatively small region on mouse chromosome 15, but that region contained more than 60 genes. The laboratory of GIVI Director Warner C. Greene and a team of scientists from NIAID now demonstrate that Rfv3 is Apobec3, an innate immunity gene with antiretroviral activity.

"This newfound link between Apobec3 and the production of neutralizing antibodies came as a complete surprise," said Dr. Greene, senior author on the paper.

While the studies involved a different retrovirus infecting mice, the findings may extend to HIV. HIV uses one of its genes, Vif, to specifically disable human Apobec3 proteins and HIV-infected patients rarely make broadly neutralizing antibodies against this virus. This new study raises the possibility that drugs or vaccines that interfere with Vif might allow humans to naturally make better neutralizing antibody responses against HIV.

"We now have a host factor needed for the production of neutralizing antibodies that HIV targets and destroys," said Gladstone scientist Mario Santiago, PhD. "This offers a fresh perspective on how to strengthen this arm of the immune response against HIV, with direct implications for immunotherapy and vaccine development."

The scientists conducted a series of genetic experiments by mating mice with different Rfv3 and Apobec3 profiles. The researchers demonstrated that Apobec3, like Rfv3, contributes to the early control of retroviral infection in mice, and also influences specific retroviral antibody responses. In addition, they discovered that Rfv3 susceptible mouse strains that fail to make antibody responses have a natural defect in Apobec3. These results provide convincing evidence that Rfv3 and Apobec3 are the same gene.

"We set out to solve a 30-year old mystery in retrovirus biology and in the process made a discovery that might impact future development of HIV vaccines. Science really is full of unexpected twists and turns," said Dr. Greene.

The link between Apobec3 and neutralizing antibody responses becomes even more tantalizing in view of other recent studies of people who somehow resist HIV infection despite years of frequent exposure to the virus. These individuals produce a particular type of antibody recognizing the virus and genetic mapping studies of their resistance points to a chromosomal region where the human Apobec3 genes are clustered.

The research group is now poised to investigate Apobec3 differences in these individuals and is currently screening for compounds that would rescue Apobec3 function during HIV infection.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>