Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify genetic link that may neutralize HIV

08.09.2008
Apobec3 Gene controls antibody response to retrovirus

Scientists from the Gladstone Institute of Virology and Immunology (GIVI) and the National Institutes of Allergy and Infectious Diseases (NIAID) have identified a gene that may influence the production of antibodies that neutralize HIV.

This new information will likely spur a new approach for making an HIV vaccine that elicits neutralizing antibodies. Neutralizing antibodies, once produced in the host, can attack and checkmate an infecting virus. The research was reported in the September 5 issue of Science.

Scientists have been striving in vain to stimulate strong protective antibodies with an HIV vaccine for years because these antibodies hold great promise for controlling HIV infection in humans. HIV is a type of virus called a "retrovirus," which copies its RNA genetic material into DNA and incorporates it into the DNA of its host.

In 1978, researchers at the National Institutes of Health (NIH) studying a similar retrovirus in mice discovered a gene called Rfv3 that influenced the production of neutralizing antibodies that allowed the animals to recover. By 1999, they had narrowed the location of Rfv3 to a relatively small region on mouse chromosome 15, but that region contained more than 60 genes. The laboratory of GIVI Director Warner C. Greene and a team of scientists from NIAID now demonstrate that Rfv3 is Apobec3, an innate immunity gene with antiretroviral activity.

"This newfound link between Apobec3 and the production of neutralizing antibodies came as a complete surprise," said Dr. Greene, senior author on the paper.

While the studies involved a different retrovirus infecting mice, the findings may extend to HIV. HIV uses one of its genes, Vif, to specifically disable human Apobec3 proteins and HIV-infected patients rarely make broadly neutralizing antibodies against this virus. This new study raises the possibility that drugs or vaccines that interfere with Vif might allow humans to naturally make better neutralizing antibody responses against HIV.

"We now have a host factor needed for the production of neutralizing antibodies that HIV targets and destroys," said Gladstone scientist Mario Santiago, PhD. "This offers a fresh perspective on how to strengthen this arm of the immune response against HIV, with direct implications for immunotherapy and vaccine development."

The scientists conducted a series of genetic experiments by mating mice with different Rfv3 and Apobec3 profiles. The researchers demonstrated that Apobec3, like Rfv3, contributes to the early control of retroviral infection in mice, and also influences specific retroviral antibody responses. In addition, they discovered that Rfv3 susceptible mouse strains that fail to make antibody responses have a natural defect in Apobec3. These results provide convincing evidence that Rfv3 and Apobec3 are the same gene.

"We set out to solve a 30-year old mystery in retrovirus biology and in the process made a discovery that might impact future development of HIV vaccines. Science really is full of unexpected twists and turns," said Dr. Greene.

The link between Apobec3 and neutralizing antibody responses becomes even more tantalizing in view of other recent studies of people who somehow resist HIV infection despite years of frequent exposure to the virus. These individuals produce a particular type of antibody recognizing the virus and genetic mapping studies of their resistance points to a chromosomal region where the human Apobec3 genes are clustered.

The research group is now poised to investigate Apobec3 differences in these individuals and is currently screening for compounds that would rescue Apobec3 function during HIV infection.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>