Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists discover gene 'bursting' plays key role in protein production

09.10.2012
Findings question earlier studies and shed light on fundamental cellular process

Scientists at the Gladstone Institutes have mapped the precise frequency by which genes get turned on across the human genome, providing new insight into the most fundamental of cellular processes—and revealing new clues as to what happens when this process goes awry.

In a study being published this week online in the Proceedings of the National Academy of Sciences, Gladstone Investigator Leor Weinberger, PhD, and his research team describe how a gene's on-and-off switching—called "bursting"—is the predominant method by which genes make proteins.

By gaining an understanding of this underlying mechanism, this discovery has the potential to vastly help researchers learn what happens at the molecular level when this mechanism is disrupted—such as in cancer or when exposed to a particular drug.

The manufacture, or synthesis, of proteins takes place inside every cell. DNA and genes—which house the instructions for making proteins—are stored within the nucleus of each cell. When a gene is switched on, those instructions are transcribed as a copy onto RNA, another type of genetic material that then directs the protein synthesis. Proteins perform a variety of functions within the cell—from the breaking down and digesting fats to resisting foreign invaders, such as bacteria or viruses. The timing and frequency with which a particular protein is synthesized is crucial to maintaining the health of the cell.

"Much like flicking on a light switch, genes get 'switched on' at specific intervals to initiate the fundamental biological process of protein synthesis," said Dr. Weinberger, who is also an associate professor at the University of California, San Francisco (UCSF), with which Gladstone is affiliated. "Until recently, the process was thought to be continuous—once a gene is switched on, it stays on, churning out protein products at a steady pace like a garden hose. But recently, some studies have suggested the opposite—that DNA produces RNA molecules in rapid-fire 'staccato' bursts. We decided to investigate how common this rapid-fire bursting was across the genome."

In laboratory experiments, Dr. Weinberger and his team inserted a green fluorescent protein, or "vector," into the DNA of Jurkat T lymphocytes—a type of white blood cell that helps maintain a healthy human immune system. From this they generated new cells in which the vector was integrated into any one of thousands of gene segments—with each segment glowing green when it was activated, or "switched on." This allowed the researchers to see exactly how gene activation occurred across the entire human genome.

"Our analysis reveals support for the "bursting" hypothesis—the genes acted as a sort of strobe light—transcribing RNA in rapid-fire bursts," said Roy Dar, PhD, a Gladstone postdoctoral fellow and one of the paper's lead authors. "We observed that the bursting frequency increases until, over time, it reaches a particular threshold. At that point higher protein levels are reached by increasing the size of the bursts, eventually coming to a halt when no more protein product is needed. These results are a huge step towards understanding the basic molecular mechanism behind gene regulation."

"Dr. Weinberger and colleagues have shown that there is a single rule governing the behavior of all genes in the genome. Their findings in human cells complement and extend similar findings made recently in other organisms," said Arjun Raj, PhD, assistant professor of bioengineering at the University of Pennsylvania and an expert in imaging single molecules within cells.

The team believes that this new-found understanding of this fundamental biological process—that genomic bursts account for the majority of instances of protein production—holds clues to discovering how the disruption of these bursts could be harmful.

"For example, in certain cancers, genes may be switched on at the wrong times, eventually leading to the formation of tumors," said Brandon Razooky, a Gladstone and UCSF graduate student and the paper's other lead author. "This is also a good example of how the basic science being performed here at Gladstone provides a solid foundation with which to prevent, treat and ultimately cure some of the world's most devastating diseases."

Michael Simpson, PhD, from the Oak Ridge National Laboratory Center for Nanophase Materials Sciences, is also a senior author on this paper. Funding came from a variety of sources, including the NIH Director's Common Fund Program (through the NIH Director's New Innovator Award Program), the National Science Foundation's Graduate Research Fellowship Program, the US Department of Energy, the Pew Scholars Program in the Biomedical Sciences, and the Alfred P. Sloan Foundation

About the Gladstone Institutes Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral and neurological diseases. Gladstone is affiliated with the University of California, San Francisco.

Anne Holden | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>