Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists discover that DNA damage occurs as part of normal brain activity

25.03.2013
Findings provide additional support for strategies to fight Alzheimer's disease

Scientists at the Gladstone Institutes have discovered that a certain type of DNA damage long thought to be particularly detrimental to brain cells can actually be part of a regular, non-harmful process. The team further found that disruptions to this process occur in mouse models of Alzheimer's disease—and identified two therapeutic strategies that reduce these disruptions.

Scientists have long known that DNA damage occurs in every cell, accumulating as we age. But a particular type of DNA damage, known as a double-strand break, or DSB, has long been considered a major force behind age-related illnesses such as Alzheimer's. Today, researchers in the laboratory of Gladstone Senior Investigator Lennart Mucke, MD, report in Nature Neuroscience that DSBs in neuronal cells in the brain can also be part of normal brain functions such as learning—as long as the DSBs are tightly controlled and repaired in good time. Further, the accumulation of the amyloid-beta protein in the brain—widely thought to be a major cause of Alzheimer's disease—increases the number of neurons with DSBs and delays their repair.

"It is both novel and intriguing team's finding that the accumulation and repair of DSBs may be part of normal learning," said Fred H. Gage, PhD, of the Salk Institute who was not involved in this study. "Their discovery that the Alzheimer's-like mice exhibited higher baseline DSBs, which weren't repaired, increases these findings' relevance and provides new understanding of this deadly disease's underlying mechanisms."

In laboratory experiments, two groups of mice explored a new environment filled with unfamiliar sights, smells and textures. One group was genetically modified to simulate key aspects of Alzheimer's, and the other was a healthy, control group. As the mice explored, their neurons became stimulated as they processed new information. After two hours, the mice were returned to their familiar, home environment.

The investigators then examined the neurons of the mice for markers of DSBs. The control group showed an increase in DSBs right after they explored the new environment—but after being returned to their home environment, DSB levels dropped.

"We were initially surprised to find neuronal DSBs in the brains of healthy mice," said Elsa Suberbielle, DVM, PhD, Gladstone postdoctoral fellow and the paper's lead author. "But the close link between neuronal stimulation and DSBs, and the finding that these DSBs were repaired after the mice returned to their home environment, suggest that DSBs are an integral part of normal brain activity. We think that this damage-and-repair pattern might help the animals learn by facilitating rapid changes in the conversion of neuronal DNA into proteins that are involved in forming memories."

The group of mice modified to simulate Alzheimer's had higher DSB levels at the start—levels that rose even higher during neuronal stimulation. In addition, the team noticed a substantial delay in the DNA-repair process.

To counteract the accumulation of DSBs, the team first used a therapeutic approach built on two recent studies—one of which was led by Dr. Mucke and his team—that showed the widely used anti-epileptic drug levetiracetam could improve neuronal communication and memory in both mouse models of Alzheimer's and in humans in the disease's earliest stages. The mice they treated with the FDA-approved drug had fewer DSBs. In their second strategy, they genetically modified mice to lack the brain protein called tau—another protein implicated in Alzheimer's. This manipulation, which they had previously found to prevent abnormal brain activity, also prevented the excessive accumulation of DSBs.

The team's findings suggest that restoring proper neuronal communication is important for staving off the effects of Alzheimer's—perhaps by maintaining the delicate balance between DNA damage and repair.

"Currently, we have no effective treatments to slow, prevent or halt Alzheimer's, from which more than 5 million people suffer in the United States alone," said Dr. Mucke, who directs neurological research at Gladstone and is a professor of neuroscience and neurology at the University of California, San Francisco, with which Gladstone is affiliated. "The need to decipher the causes of Alzheimer's and to find better therapeutic solutions has never been more important—or urgent. Our results suggest that readily available drugs could help protect neurons against some of the damages inflicted by this illness. In the future, we will further explore these therapeutic strategies. We also hope to gain a deeper understanding of the role that DSBs play in learning and memory—and in the disruption of these important brain functions by Alzheimer's disease."

Other scientists who participated in this research at Gladstone include Pascal Sanchez, PhD, Alexxai Kravitz, PhD, Xin Wang, Kaitlyn Ho, Kirsten Eilertson, PhD, Nino Devidze, PhD, and Anatol Kreitzer, PhD. This research was supported by grants from the National Institutes of Health and the S.D. Bechtel, Jr. Foundation.

About the Gladstone Institutes

Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral and neurological diseases. Gladstone is affiliated with the University of California, San Francisco.

Anne Holden | EurekAlert!
Further information:
http://gladstoneinstitutes.org/

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>