Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giving transplanted cells a nanotech checkup

06.02.2013
Researchers devise a way to safely see whether replacement cells are still alive

Researchers at Johns Hopkins have devised a way to detect whether cells previously transplanted into a living animal are alive or dead, an innovation they say is likely to speed the development of cell replacement therapies for conditions such as liver failure and type 1 diabetes.


Nanosensors (green spheres) are composed of fat and L-arginine molecules, as well as separate indicator molecules that give off MRI-detectable and light signals when cells are alive. Nanosensors are enclosed in a hydrogel membrane along with liver cells (pink). Nutrients and other relatively small molecules (red) are able to travel across the hydrogel membrane to and from the bloodstream.

Credit: Sayo Studios

As reported in the March issue of Nature Materials, the study used nanoscale pH sensors and magnetic resonance imaging (MRI) machines to tell if liver cells injected into mice survived over time.

"This technology has the potential to turn the human body into less of a black box and tell us if transplanted cells are still alive," says Mike McMahon, Ph.D., an associate professor of radiology at the Johns Hopkins University School of Medicine who oversaw the study. "That information will be invaluable in fine-tuning therapies."

Regenerative medicine advances depend on reliable means of replacing damaged or missing cells, such as injecting pancreatic cells in people with diabetes whose own cells don't make enough insulin. To protect the transplanted cells from the immune system, while allowing the free flow of nutrients and insulin between the cells and the body, they can be encased in squishy hydrogel membranes before transplantation. But, explains McMahon, "once you put the cells in, you really have no idea how long they survive." Such transplanted cells eventually stop working in most patients, who must resume taking insulin. At that point, physicians can only assume that cells have died, but they don't know when or why, says McMahon.

With that problem in mind, McMahon's group, which specializes in methods of detecting chemical changes, collaborated with the research group headed by Jeff Bulte, Ph.D., the director of cellular imaging at Hopkins' Institute for Cell Engineering. Bulte's group devises ways of tracking implanted cells through the body using MRI. Led by research fellow Kannie Chan, Ph.D., the team devised an extremely tiny, or nanoscale, sensor filled with L-arginine, a nutritional supplement that responds chemically to small changes in acidity (pH) caused by the death of nearby cells. Changes in the acidity would in turn set off changes in sensor molecules embedded in the thin layer of fat that makes up the outside of the nanoparticle, giving off a signal that could be detected by MRI.

To test how these nanosensors would work in a living body, the team loaded them into hydrogel spheres along with liver cells — a potential therapy for patients with liver failure — and another sensor that gives off bioluminescent light only while the cells are alive. The spheres were injected just under the skin of mice. As confirmed by the light signal, the MRI accurately detected where the cells were in the body and what proportion were still alive. (Such light indicators cannot be used to track cells in humans because our bodies are too large for visible signals to get through, but these indicators allowed the team to check whether the MRI nanosensors were working properly in the mice.)

"It was exciting to see that this works so well in a living body," Chan says. The team hopes that because the components of the system — hydrogel membrane, fat molecules, and L-arginine — are safe for humans, adapting their discovery for clinical use will prove relatively straightforward. "This should take a lot of the guesswork out of cell transplantation by letting doctors see whether the cells survive, and if not, when they die," Chan says. "That way they may be able to figure out what's killing the cells, and how to prevent it."

Potential applications of the sensors are not limited to cells inside hydrogel capsules, Bulte notes. "These nanoparticles would work outside capsules, and they could be paired with many different kinds of cells. For example, they may be used to see whether tumor cells are dying in response to chemotherapy," he says.

Other authors on the paper were Guanshu Liu, Xiaolei Song, Heechul Kim, Tao Yu, Dian R. Arifin, Assaf A. Gilad, Justin Hanes, Piotr Walczak and Peter C. M. van Zijl, all of the Johns Hopkins University School of Medicine.

The study was funded by the National Institute of Biomedical Imaging and Bioengineering (grant numbers R01 EB012590, EB015031, EB015032 and EB007825).

The paper can be found here: http://www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat3525.html.

Further reading:

New Technique Developed for Tracking Cells in the Body: http://www.hopkinsmedicine.org/news/media/releases/New_Technique_Developed

_for_Tracking_Cells_in_the_Body

Tracking the Elusive Stem Cell: http://www.hopkinsmedicine.org/stem_cell_research/keeping_track/tracking_

the_elusive_stem_cell.html

Jeff Bulte on Tracking Cells Through the Body: http://www.hopkinsmedicine.org/institute_cell_engineering/experts/meet_

scientists/jeff_bulte.html

Hopkins Imaging Scientist Earns New NIH 'Eureka' Grant for Exceptional, Unconventional Research: http://www.hopkinsmedicine.org/news/media/releases/hopkins_imaging_scientist

_earns_new_nih_eureka_grant_for_exceptional_unconventional_research.

Shawna Williams | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

Researchers identify cause of hereditary skeletal muscle disorder

22.02.2017 | Health and Medicine

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>