Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giving DNA segments the golden touch

10.08.2009
Controlled positioning of nucleic acids on gold nanoparticles creates new possibilities for bottom-up nanotechnologies

Metal nanoparticles have radically different electronic, optical and magnetic properties from their larger states, which makes them useful as materials in new, ultra-small devices such as biological sensors. Constructing such devices, however, is difficult because, unlike atoms, nanoparticles lack directional bonds that allow them to be arranged precisely.

One strategy to overcome this limitation is to attach oligonucleotides—single strands of molecules that constitute DNA—to nanoparticle surfaces, and then, through Watson–Crick base pairing of the nucleic acids, join the nanoparticles together. However, manipulating the number and positions of oligonucleotides on the nanoparticles has been impossible.

Now, Kenji Suzuki, Kazuo Hosokawa and Mizuo Maeda from the RIKEN Advanced Science Institute in Wako have developed a method to immobilize oligonucleotides on gold nanoparticle surfaces with precise control over their number and geometric arrangement 1. Because this procedure can be used for nanoparticles other than gold, it should initiate improved techniques for spontaneous assembly of small materials into complex structures—so-called ‘bottom–up’ nanotechnologies.

In their proof-of-principle experiment, Suzuki and colleagues combined two oligonucleotides containing reactive thiol (sulfur-hydrogen) groups with a third, non-thiolated oligonucleotide template to create a DNA nanostructure. This DNA template was then reacted with a gold nanoparticle, forming a complex through the active thiol groups. Finally, the DNA template was separated from the complex, leaving two free oligonucleotide strands on the gold nanoparticle.

Transmission electron microscopy imaging confirmed the success of the DNA template technique. Without the template, the nucleic acids were observed at random locations on the nanoparticles. With the template, the two oligonucleotides were always seen at distinct geometric positions as arrangements controlled by the specific DNA nanostructure.

Suzuki says that top-down methods such as immobilization by a tip of scanning probe microscope are very precise, but prohibitively slow. In contrast, his team’s DNA template is extremely fast and automated, and represents a new type of ‘nanomachine.’

“Each nanomachine catches a certain number of oligonucleotides, immobilizes them onto a nanoparticle, and then releases them,” explains Suzuki. “Naturally, this task is best suited to a DNA template having complementary sequences to the oligonucleotides, since duplex formation is then completely reversible.”

According to Suzuki, creating nanoparticles with atom-like binding capabilities would have advantages beyond developing new types of nanostructures. “I knew that such a result would be welcomed by many other researchers and would accelerate the whole field,” he says.

Reference

1. Suzuki, K., Hosokawa, K. & Maeda, M. Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces. Journal of the American Chemical Society 131, 7518–7519 (2009). |article|

The corresponding author for this highlight is based at the RIKEN Bioengineering Laboratory

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/756/
http://www.rikenresearch.riken.jp/research/756/image_2232.html
http://www.researchsea.com

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>