Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giving DNA segments the golden touch

10.08.2009
Controlled positioning of nucleic acids on gold nanoparticles creates new possibilities for bottom-up nanotechnologies

Metal nanoparticles have radically different electronic, optical and magnetic properties from their larger states, which makes them useful as materials in new, ultra-small devices such as biological sensors. Constructing such devices, however, is difficult because, unlike atoms, nanoparticles lack directional bonds that allow them to be arranged precisely.

One strategy to overcome this limitation is to attach oligonucleotides—single strands of molecules that constitute DNA—to nanoparticle surfaces, and then, through Watson–Crick base pairing of the nucleic acids, join the nanoparticles together. However, manipulating the number and positions of oligonucleotides on the nanoparticles has been impossible.

Now, Kenji Suzuki, Kazuo Hosokawa and Mizuo Maeda from the RIKEN Advanced Science Institute in Wako have developed a method to immobilize oligonucleotides on gold nanoparticle surfaces with precise control over their number and geometric arrangement 1. Because this procedure can be used for nanoparticles other than gold, it should initiate improved techniques for spontaneous assembly of small materials into complex structures—so-called ‘bottom–up’ nanotechnologies.

In their proof-of-principle experiment, Suzuki and colleagues combined two oligonucleotides containing reactive thiol (sulfur-hydrogen) groups with a third, non-thiolated oligonucleotide template to create a DNA nanostructure. This DNA template was then reacted with a gold nanoparticle, forming a complex through the active thiol groups. Finally, the DNA template was separated from the complex, leaving two free oligonucleotide strands on the gold nanoparticle.

Transmission electron microscopy imaging confirmed the success of the DNA template technique. Without the template, the nucleic acids were observed at random locations on the nanoparticles. With the template, the two oligonucleotides were always seen at distinct geometric positions as arrangements controlled by the specific DNA nanostructure.

Suzuki says that top-down methods such as immobilization by a tip of scanning probe microscope are very precise, but prohibitively slow. In contrast, his team’s DNA template is extremely fast and automated, and represents a new type of ‘nanomachine.’

“Each nanomachine catches a certain number of oligonucleotides, immobilizes them onto a nanoparticle, and then releases them,” explains Suzuki. “Naturally, this task is best suited to a DNA template having complementary sequences to the oligonucleotides, since duplex formation is then completely reversible.”

According to Suzuki, creating nanoparticles with atom-like binding capabilities would have advantages beyond developing new types of nanostructures. “I knew that such a result would be welcomed by many other researchers and would accelerate the whole field,” he says.

Reference

1. Suzuki, K., Hosokawa, K. & Maeda, M. Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces. Journal of the American Chemical Society 131, 7518–7519 (2009). |article|

The corresponding author for this highlight is based at the RIKEN Bioengineering Laboratory

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/756/
http://www.rikenresearch.riken.jp/research/756/image_2232.html
http://www.researchsea.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>