Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ginkgo Extract Has Multiple Actions on Alzheimer Symptoms

26.08.2008
Maryland School of Pharmacy researchers are learning how Ginkgo biloba extract works on memory symptoms.

Scientists have known for more than 10 years that a certain extract from leaves of the ancient eastern tree, Ginkgo biloba, can somewhat ease symptoms of memory loss in Alzheimer’s disease patients.

Now, researchers at the University of Maryland School of Pharmacy are learning how the popular extract actually works in Alzheimer’s patients.

Understanding the biochemical workings of the ginkgo extract could help doctors expand treatment options for other medical conditions. A synergy, or the combination of separate actions by the Ginkgo extract, common in herbal remedies, may be the key to its effectiveness, says Yuan Luo, PhD, associate professor at the School of Pharmacy.

In ongoing studies, a research team led by Luo found that giving mice with the human Alzheimer’s gene the ginkgo extract called Egb 761 improved the process of making new nerve cells in part of the brain much affected by the disease. The team found evidence that the protective effect of the extract also could be due to decreasing senile plaques or the clumping of beta-amyloid in the brain tissues. Amyloid is part of a protein and a central factor in the progression of Alzheimer’s disease.

Currently Alzheimer’s disease is causing progressive dementia and sometimes death in about four million Americans, mostly people older than 70. In the U.S., the incidence of Alzheimer’s disease has steadily increased as the average life span has lengthened. Currently, there are no drugs with disease-modifying or preventive properties. However, the School of Pharmacy study and others are now suggesting that many of the symptoms can be avoided or significantly reduced.

The disease starts with loss of nerve connections and broken circuitry of nerve signals in synapses. Modern neuropathology studies beginning in the 1960’s revealed that adults create new nerve cells continually in learning regions of the brain. One of the regions of neurogenesis is in the hippocampus, important to memory and cognition. Luo’s study demonstrated the dual effect of Ginkgo extract in the hippocampus—enhanced making of nerve cells and decreased clumping in brain tissue.

“By finding out how it works, it might help drug discovery researchers and doctors learn how other herbal and conventional drugs work on in multiple ways,” said Luo. When herbal medicines are effective, she said, it’s often because of a synergy of different biological effects. “Alzheimer’s disease is caused by multiple factors, not just one thing that has gone wrong.” Therefore, drugs that target multiple sites would be most efficacious, she added.

Results from the School of Pharmacy experiments, slated to continue for at least another year, provide a rationale for future medicinal chemistry and for identifying other potentially efficacious compounds with desirable activity as potential therapeutic agents to prevent and/or treat Alzheimer’s disease, according to Luo.

Meanwhile, to confirm or refute the theory that medicine made from Ginkgo biloba can prevent or delay changes in memory, thinking, and personality as people get older, researchers are currently analyzing data from a five-year clinical trial, The Ginkgo Evaluation of Memory, sponsored by the National Institutes of Health. About 3,000 people at four clinics, including one in Hagerstown, Md., participated.

Luo’s research team is focused on aging, age-related neurodegenerative diseases, and neuroprotective mechanisms. While disease prevention theories associated with herbal medicine have the potential to both increase quality of life and reduce health care costs, ways that extracts of herbs work in the body are still poorly understood, she says.

Steve Berberich | Newswise Science News
Further information:
http://www.umaryland.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>