Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giessen scientists discover new pathways in the perception of light by plants

12.07.2012
Plant physiologists in Giessen have made a discovery that might change a lot about how we think plants respond to light.

Generally, plants adjust their growth to fit in with their local environment, light being easily the most important factor - after all, they need light to live. These responses are not controlled by photosynthesis itself, however, but by specialized photoreceptor proteins including phytochrome and phototropin which respond to red and blue light, respectively.

Whereas phototropin somehow steers growth direction in higher plants, phytochrome controls most aspects of plant development including germination, stem extension, greening and even flowering. Not surprisingly, it has been found that very many plant genes are regulated by phytochrome, and indeed most textbooks say that phytochrome works exclusively in this manner.

That cannot be true, however, because some phytochrome effects occur almost instantaneously whereas it takes at least 10 minutes to activate a gene and produce a protein. Moreover, in lower plants it is phytochrome that steers growth direction – that simply can't be done via gene regulation.

However, writing in the prestigious Proceedings of the National Academy of Sciences USA, Katharina Jaedicke and colleagues from the Institute for Plant Physiology of the Justus Liebig University in Giessen now report that phytochrome binds to phototropin at the cell membrane in both lower and higher plants. In moss filaments, the phytochrome probably uses the phototropin to steer growth towards the light source because no reaction occurs if the phototropin is missing. The association of phytochrome with phototropin in higher plants probably has a different function in relation to direction sensing, however.

The discovery is particularly remarkable because elegant experiments with polarized light carried out in the 1960's predicted that phytochrome was attached to the cell membrane – but up to now there had been no direct evidence for this. Scientists will now be able to use the new findings to design experiments which might provide vital information about how phytochrome and phototropin work and thus how plants respond to light – phenomena which are fundamental to agriculture and thus our food supply.

Source: http://www.pnas.org/content/early/2012/07/03/1120203109.abstract

Contact: Prof. Jon Hughes (jon.hughes@uni-giessen.de)

Christel Lauterbach | idw
Further information:
http://www.uni-giessen.de

Further reports about: Phototropin cell membrane photosynthesis phytochrome receptor protein

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>