Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gibbon feet provide model for early human walking

15.12.2008
Scientists at the University of Liverpool have found that early humans could have walked successfully on a ‘flexible’ flat foot, similar to modern day gibbons.

The arched ‘rigid’ foot of modern humans – thought to have appeared approximately 1.8 million years ago – is best adapted for upright walking, but scientists have found that early humans once had ‘flexible’ feet and could have walked on the ground some years earlier.

Scientists originally thought that a flexible foot could have been ‘restrictive’ for humans learning to walk upright as it lacked the necessary power to push off the ground. To understand the mechanisms of the flexible foot, scientists studied the movements of gibbons – small apes living in the rainforest of South East Asia – which walk upright both on the ground and in the trees.

Dr Evie Vereecke, from the University’s School of Biomedical Sciences, explains: “Gibbons have a flexible joint mid-way along the foot that supports them in walking and climbing. Human ancestors also had this joint for tree dwelling and ground walking, but modern humans have now lost its flexibility in favour of a ‘rigid’ foot.

“To understand how successful or ‘restrictive’ the flexible foot might have been for early humans we set up a high-speed camera at Belgium’s Wild Animal Park to capture the gibbon’s foot movements. We built a computer model to digitise the footage we collected so that we could analyse the mechanisms employed in the foot and compare it to how humans walk today.

“We found that gibbons hit the ground with their toes first, similar to the ‘forefoot’ strike of professional sprint runners, which stretches the tendons in the toes. We also found that instead of lifting the foot at the end of a stride, the gibbon raised its heel first, making an upward arch and stretching the tendons in the sole of the foot.

“These stretched tendons allow storage of elastic energy and once the toe leaves the ground the tendons in the foot recoil, releasing the stored energy and generating the necessary propulsion to push off the ground and walk upright quite successfully.

“The structure of the modern human foot is different to the gibbon, but the energy storage mechanism is similar. The human foot is spanned by an elastic band along its sole which is stretched when we put our weight on it and stores elastic energy ready for release when the foot leaves the ground.”

The work - published in the Journal of Experimental Biology - shows that it is possible that human ancestors could have walked successfully with an upright-gait on a ‘flexible’ flat foot and may have similar energy storage mechanisms to modern humans.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>