Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Bird Poo Records Pre-human New Zealand

13.01.2009
A treasure trove of information about pre-human New Zealand has been found in faeces from giant extinct birds, buried beneath the floor of caves and rock shelters for thousands of years.

A team of ancient DNA and palaeontology researchers from the University of Adelaide, University of Otago and the NZ Department of Conservation have published their analyses of plant seeds, leaf fragments and DNA from the dried faeces (coprolites) to start building the first detailed picture of an ecosystem dominated by giant extinct species.

Former PhD student Jamie Wood, from the University of Otago, discovered more than 1500 coprolites in remote areas across southern New Zealand, primarily from species of the extinct giant moa, which ranged up to 250 kilograms and three metres in height. Some of the faeces recovered were up to 15 centimetres in length.

”Surprisingly for such large birds, over half the plants we detected in the faeces were under 30 centimetres in height,” says Dr Wood. “This suggests that some moa grazed on tiny herbs, in contrast to the current view of them as mainly shrub and tree browsers. We also found many plant species that are currently threatened or rare, suggesting that the extinction of the moa has impacted their ability to reproduce or disperse.”

“New Zealand offers a unique chance to reconstruct how a ‘megafaunal ecosystem’ functioned,” says Professor Alan Cooper, Director of the Australian Centre for Ancient DNA, which performed the DNA typing.

“You can’t do this elsewhere in the world because the giant species became extinct too long ago, so you don’t get such a diverse record of species and habitats. Critically, the interactions between animals and plants we see in the poo provides key information about the origins and background to our current environment, and predicting how it will respond to future climate change and extinctions.”

“When animals shelter in caves and rock shelters, they leave faeces which can survive for thousands of years if dried out,” Professor Cooper says. “Given the arid conditions, Australia should probably have similar deposits from the extinct giant marsupials. A key question for us is ‘where has all the Australian poo gone?’”

Other University of Adelaide members of the research team include Dr Jeremy Austin and Dr Trevor Worthy from the Australian Centre for Ancient DNA, part of the University’s newly-established Environment Institute.

The team’s findings have recently been published in Quaternary Science Reviews, an international geological research journal.

Professor Alan Cooper
Federation Fellow, and Director
Australian Centre for Ancient DNA
The Environment Institute
The University of Adelaide
Phone: +61 8 8303 5950
alan.cooper@adelaide.edu.au

Professor Alan Cooper | Newswise Science News
Further information:
http://www.adelaide.edu.au

More articles from Life Sciences:

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

New printing technique uses cells and molecules to recreate biological structures

20.02.2018 | Life Sciences

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>