Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German Research Foundation approves new priority program in the life sciences

15.04.2014

Funding to be provided for national program on "Chemical Biology of Native Nucleic Acid Modifications" coordinated by Mainz University

In recent years, it has become clear that the genetic code is far more complex than previously assumed. In addition to the well-known building blocks adenine, cytosine, guanine, and thymine, numerous chemical variations play an important role.

Scientists now assume that the newly discovered nucleic acid modifications may form a second layer of information that extends and complements the genetic code. "The new discoveries are rather like umlauts that extend the standard alphabet," explained Professor Mark Helm of the Institute of Pharmaceutical Sciences and Biochemistry - Therapeutic Life Sciences at Johannes Gutenberg University Mainz (JGU). Helm is the coordinator of the priority program "Chemical Biology of Native Nucleic Acid Modifications", which the German Research Foundation (DFG) has now agreed to fund.

This nationwide priority program will start in 2015 and, according to plans, will continue to receive DFG support for six years. "We are lucky enough in Germany to have some of the leading international researchers in all the core areas in this field and we thus intend to explore this subject with the help of a country-wide network," said Helm. Decoding the information in the modified DNA and RNA bases and nucleosides is a hot topic in chemical biology right now.

Before 2009, scientists were convinced that only the four Watson-Crick bases plus a fifth base called 5-methylcytosine code for the genetic information that is key to life. Then three additional DNA modifications were uncovered in quick succession, which are postulated to act as switches that regulate gene functions. The switch can be used to activate or deactivate a gene.

"We are looking at a completely new coding mechanism that had previously escaped our attention," Helm pointed out. On the other hand, scientists have long known that RNA, which is responsible for translating the genetic code into proteins, contains more than 150 different modified nucleosides. The purpose of these, however, is still largely unknown.

The new research network will closely examine the molecular details of the modifications in naturally occurring nucleic acids. This will involve, among other things, detecting and identifying modifications, localizing and quantifying them, and uncovering both their structure and function. In an initial period, an emphasis will be on methods from chemistry and structural biology, allowing to connect to scientists from the life sciences in joint projects. The German Research Foundation will issue a call for proposals in this innovative and interdisciplinary research program.

Further information:
Professor Dr. Mark Helm
Medical / Pharmaceutical Chemistry
Institute of Pharmaceutical Sciences and Biochemistry – Therapeutic Life Sciences
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-25731
fax +49 6131 39-20373
e-mail: mhelm@uni-mainz.de
http://www.pharmazie.uni-mainz.de/AK-Helm/index_ENG.php

Related links:
http://www.dfg.de/en/service/press/press_releases/2014/press_release_no_10/index... - DFG press release “16 New Priority Programmes”

Weitere Informationen:

http://www.uni-mainz.de/presse/17224_ENG_HTML.php - press release

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Biochemistry DFG DNA Foundation Pharmaceutical RNA acids modifications thymine

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>