Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German Research Foundation approves new priority program in the life sciences

15.04.2014

Funding to be provided for national program on "Chemical Biology of Native Nucleic Acid Modifications" coordinated by Mainz University

In recent years, it has become clear that the genetic code is far more complex than previously assumed. In addition to the well-known building blocks adenine, cytosine, guanine, and thymine, numerous chemical variations play an important role.

Scientists now assume that the newly discovered nucleic acid modifications may form a second layer of information that extends and complements the genetic code. "The new discoveries are rather like umlauts that extend the standard alphabet," explained Professor Mark Helm of the Institute of Pharmaceutical Sciences and Biochemistry - Therapeutic Life Sciences at Johannes Gutenberg University Mainz (JGU). Helm is the coordinator of the priority program "Chemical Biology of Native Nucleic Acid Modifications", which the German Research Foundation (DFG) has now agreed to fund.

This nationwide priority program will start in 2015 and, according to plans, will continue to receive DFG support for six years. "We are lucky enough in Germany to have some of the leading international researchers in all the core areas in this field and we thus intend to explore this subject with the help of a country-wide network," said Helm. Decoding the information in the modified DNA and RNA bases and nucleosides is a hot topic in chemical biology right now.

Before 2009, scientists were convinced that only the four Watson-Crick bases plus a fifth base called 5-methylcytosine code for the genetic information that is key to life. Then three additional DNA modifications were uncovered in quick succession, which are postulated to act as switches that regulate gene functions. The switch can be used to activate or deactivate a gene.

"We are looking at a completely new coding mechanism that had previously escaped our attention," Helm pointed out. On the other hand, scientists have long known that RNA, which is responsible for translating the genetic code into proteins, contains more than 150 different modified nucleosides. The purpose of these, however, is still largely unknown.

The new research network will closely examine the molecular details of the modifications in naturally occurring nucleic acids. This will involve, among other things, detecting and identifying modifications, localizing and quantifying them, and uncovering both their structure and function. In an initial period, an emphasis will be on methods from chemistry and structural biology, allowing to connect to scientists from the life sciences in joint projects. The German Research Foundation will issue a call for proposals in this innovative and interdisciplinary research program.

Further information:
Professor Dr. Mark Helm
Medical / Pharmaceutical Chemistry
Institute of Pharmaceutical Sciences and Biochemistry – Therapeutic Life Sciences
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-25731
fax +49 6131 39-20373
e-mail: mhelm@uni-mainz.de
http://www.pharmazie.uni-mainz.de/AK-Helm/index_ENG.php

Related links:
http://www.dfg.de/en/service/press/press_releases/2014/press_release_no_10/index... - DFG press release “16 New Priority Programmes”

Weitere Informationen:

http://www.uni-mainz.de/presse/17224_ENG_HTML.php - press release

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Biochemistry DFG DNA Foundation Pharmaceutical RNA acids modifications thymine

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>