Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German Research Foundation approves new priority program in the life sciences

15.04.2014

Funding to be provided for national program on "Chemical Biology of Native Nucleic Acid Modifications" coordinated by Mainz University

In recent years, it has become clear that the genetic code is far more complex than previously assumed. In addition to the well-known building blocks adenine, cytosine, guanine, and thymine, numerous chemical variations play an important role.

Scientists now assume that the newly discovered nucleic acid modifications may form a second layer of information that extends and complements the genetic code. "The new discoveries are rather like umlauts that extend the standard alphabet," explained Professor Mark Helm of the Institute of Pharmaceutical Sciences and Biochemistry - Therapeutic Life Sciences at Johannes Gutenberg University Mainz (JGU). Helm is the coordinator of the priority program "Chemical Biology of Native Nucleic Acid Modifications", which the German Research Foundation (DFG) has now agreed to fund.

This nationwide priority program will start in 2015 and, according to plans, will continue to receive DFG support for six years. "We are lucky enough in Germany to have some of the leading international researchers in all the core areas in this field and we thus intend to explore this subject with the help of a country-wide network," said Helm. Decoding the information in the modified DNA and RNA bases and nucleosides is a hot topic in chemical biology right now.

Before 2009, scientists were convinced that only the four Watson-Crick bases plus a fifth base called 5-methylcytosine code for the genetic information that is key to life. Then three additional DNA modifications were uncovered in quick succession, which are postulated to act as switches that regulate gene functions. The switch can be used to activate or deactivate a gene.

"We are looking at a completely new coding mechanism that had previously escaped our attention," Helm pointed out. On the other hand, scientists have long known that RNA, which is responsible for translating the genetic code into proteins, contains more than 150 different modified nucleosides. The purpose of these, however, is still largely unknown.

The new research network will closely examine the molecular details of the modifications in naturally occurring nucleic acids. This will involve, among other things, detecting and identifying modifications, localizing and quantifying them, and uncovering both their structure and function. In an initial period, an emphasis will be on methods from chemistry and structural biology, allowing to connect to scientists from the life sciences in joint projects. The German Research Foundation will issue a call for proposals in this innovative and interdisciplinary research program.

Further information:
Professor Dr. Mark Helm
Medical / Pharmaceutical Chemistry
Institute of Pharmaceutical Sciences and Biochemistry – Therapeutic Life Sciences
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-25731
fax +49 6131 39-20373
e-mail: mhelm@uni-mainz.de
http://www.pharmazie.uni-mainz.de/AK-Helm/index_ENG.php

Related links:
http://www.dfg.de/en/service/press/press_releases/2014/press_release_no_10/index... - DFG press release “16 New Priority Programmes”

Weitere Informationen:

http://www.uni-mainz.de/presse/17224_ENG_HTML.php - press release

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Biochemistry DFG DNA Foundation Pharmaceutical RNA acids modifications thymine

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>