Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German Research Foundation approves new priority program in the life sciences

15.04.2014

Funding to be provided for national program on "Chemical Biology of Native Nucleic Acid Modifications" coordinated by Mainz University

In recent years, it has become clear that the genetic code is far more complex than previously assumed. In addition to the well-known building blocks adenine, cytosine, guanine, and thymine, numerous chemical variations play an important role.

Scientists now assume that the newly discovered nucleic acid modifications may form a second layer of information that extends and complements the genetic code. "The new discoveries are rather like umlauts that extend the standard alphabet," explained Professor Mark Helm of the Institute of Pharmaceutical Sciences and Biochemistry - Therapeutic Life Sciences at Johannes Gutenberg University Mainz (JGU). Helm is the coordinator of the priority program "Chemical Biology of Native Nucleic Acid Modifications", which the German Research Foundation (DFG) has now agreed to fund.

This nationwide priority program will start in 2015 and, according to plans, will continue to receive DFG support for six years. "We are lucky enough in Germany to have some of the leading international researchers in all the core areas in this field and we thus intend to explore this subject with the help of a country-wide network," said Helm. Decoding the information in the modified DNA and RNA bases and nucleosides is a hot topic in chemical biology right now.

Before 2009, scientists were convinced that only the four Watson-Crick bases plus a fifth base called 5-methylcytosine code for the genetic information that is key to life. Then three additional DNA modifications were uncovered in quick succession, which are postulated to act as switches that regulate gene functions. The switch can be used to activate or deactivate a gene.

"We are looking at a completely new coding mechanism that had previously escaped our attention," Helm pointed out. On the other hand, scientists have long known that RNA, which is responsible for translating the genetic code into proteins, contains more than 150 different modified nucleosides. The purpose of these, however, is still largely unknown.

The new research network will closely examine the molecular details of the modifications in naturally occurring nucleic acids. This will involve, among other things, detecting and identifying modifications, localizing and quantifying them, and uncovering both their structure and function. In an initial period, an emphasis will be on methods from chemistry and structural biology, allowing to connect to scientists from the life sciences in joint projects. The German Research Foundation will issue a call for proposals in this innovative and interdisciplinary research program.

Further information:
Professor Dr. Mark Helm
Medical / Pharmaceutical Chemistry
Institute of Pharmaceutical Sciences and Biochemistry – Therapeutic Life Sciences
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-25731
fax +49 6131 39-20373
e-mail: mhelm@uni-mainz.de
http://www.pharmazie.uni-mainz.de/AK-Helm/index_ENG.php

Related links:
http://www.dfg.de/en/service/press/press_releases/2014/press_release_no_10/index... - DFG press release “16 New Priority Programmes”

Weitere Informationen:

http://www.uni-mainz.de/presse/17224_ENG_HTML.php - press release

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Biochemistry DFG DNA Foundation Pharmaceutical RNA acids modifications thymine

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>