Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The geometry of randomness

08.03.2010
Geometric factors can have a strong influence on the seemingly random walk of objects across pores in a thin membrane

When a butterfly flaps its wings in Europe, a storm may be caused in Asia. This often-used metaphor illustrates the strong resonances that may occur in random physical systems. Indeed, in systems affected by random effects, the influence of stimuli, such as external forces, on the eventual outcome is often poorly understood.

An international team of researchers working at the RIKEN Advanced Science Institute in Wako has now discovered that geometric factors can play an important role in random processes such as the movement of a particle through a cell membrane.

One particular consequence of random effects is stochastic resonance, where the movement of an object between two states—for example, across a membrane partitioning a box—depends on the external force, or ‘noise’ applied to the system. Certain levels of noise may even amplify the response of the system, so that the particle in the box travels faster from left to right. “Stochastic resonance is a common effect in electrical circuits or in biological sensory organs, where it is used to increase the system’s response,” says Franco Nori, who led the research team.

Stochastic resonance is a purely random effect, although the size and shape of a variety of constrained biological systems, such as pores or channels, can influence the response of the system, according to team member Pulak Kumar Ghosh.

The researchers therefore studied the influence of geometrical effects on stochastic resonance. “We considered systems where the membrane has different pore geometries,” says Fabio Marchesoni, also from the team. In order to stimulate a geometric response, the researchers simulated the effect of an oscillating force perpendicular to the membrane that shakes the particles back and forth. Previous studies of stochastic resonance effects showed that a force that produces no net movement should have no influence on the particle transport. Yet, Nori and colleagues observed a strong influence on the frequency of the driving force as well as its amplitude. In addition, the shape of the membrane and that of the surrounding cavities plays a role in the efficiency of the particle transfer.

Owing to the geometric dependence of this effect, the researchers have coined it ‘geometric stochastic resonance’, and expect to find it in certain physical systems. Team member Sergey Savel’ev suggests that, “the transport of magnetic fields across superconducting samples with thin barriers may be a good first experimental example that demonstrates geometric stochastic resonance.”

The corresponding author for this highlight is based at the Digital Materials Team, RIKEN Advanced Science Institute

Journal information
Ghosh, P.K., Marchesoni, F., Savel’ev, S.E. & Nori, F. Geometric stochastic resonance. Physical Review Letters 104, 020601 (2010)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6206
http://www.researchsea.com

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>