Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genomic study provides a glimpse of how whales could adapt to ocean

25.11.2013
The latest study was published online in Nature Genetics

In a paper published in Nature Genetics, researchers from Korea Institute of Ocean Science and Technology, Korea Genome Research Foundation, BGI, and other institutes presented the first high-depth minke whale genome and their new findings on how whales successfully adapted to ocean environment. The data yielded in this study will contribute to future studies of marine mammal diseases, conservation and evolution.

Whales roam throughout all of the world's oceans, living in the water but breathing air like humans. At the top of the food chain, whales are vital to the health of the marine environment, whereas 7 out of the 13 great whale species are endangered or vulnerable. The minke whale is the most abundant baleen whale. Its wide distribution makes it an ideal candidate for whole reference genome sequencing.

In this study, researchers conducted de novo sequencing on a minke whale with 128x average depth of coverage, and re-sequenced three minke whales, a fin whale (Balaenoptera physalus), a bottlenose dolphin, and a finless porpoise (Neophocaena phocaenoides). The yielded data may help to improve scientists' understanding of the evolutionary changes adapted to ocean environment from whole genome level.

The adaptation of whale to ocean life was notably marked by resistance to physiological stresses caused by a lack of oxygen, increased reactive oxygen species, and high salt level. In this study, researchers investigated a number of whale-specific genes that were strongly associated with stress resistance, such as the peroxiredoxin (PRDX) family, O-linked N-acetylglucosaminylation (O-GlcNAcylation). The results revealed that the gene families associated with stress-responsive proteins and anaerobic metabolism were expanded.

Perhaps the most dramatic environmental adaptation for a whale is deep diving, which can induce hypoxia. Under the hypoxic conditions, the body might produce more reactive oxygen species (ROS), harmful compounds that can damage DNA. Glutathione is a well-known antioxidant that prevents damage to important cellular components by ROS. In this study, researchers provided evidence to support that there is an increased ratio of reduced glutathione/glutathione disulfide when suffering hypoxic or oxidative stress.

Minke whales and other Mysticeti whale species grow baleen instead of teeth. It's previously reported that the genes ENAM, MMP, and AMEL might play a role in tooth enamel formation and biomineralization. This study showed that these genes may be pseudogenes with early stop codons in the baleen whales. In addition, researchers found that the gene families related to whale's body hair and sensory receptors were contracted, such as Keratin-related gene families associated with hair formation, several Hox genes that play an important role in the body plan and embryonic development.

Xuanmin Guang, project manager from BGI, said, "Minke whale is the first marine mammal that has been sequenced with such high-depth genome coverage. The genome data not only can help us know much more about the adaption mechanisms underlying minke whale, but also provides invaluable resource for marine mammal's future studies such as diseases control and prevention, species conservation,and protection."

About BGI

BGI was founded in 1999 with the mission of being a premier scientific partner to the global research community. The goal of BGI is to make leading-edge genomic science highly accessible through its investment in infrastructure that leverages the best available technology, economies of scale, and expert bioinformatics resources. BGI, which includes both private non-profit genomic research institutes and sequencing application commercial units, and its affiliates, BGI Americas, headquartered in Cambridge, MA, and BGI Europe, headquartered in Copenhagen, Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has established a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research which has generated over 250 publications in top-tier journals such as Nature and Science. These accomplishments include sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, most recently, have sequenced the human Gut metagenome, and a significant proportion of the genomes for 1,000 genomes. For more information about BGI please visit http://www.genomics.cn.

Contact Information:

Bicheng Yang, Ph.D.
Public Communication Officer
BGI+86-755-82639701yangbicheng@genomics.cn
http://www.genomics.cn

Jia Liu | EurekAlert!
Further information:
http://www.genomics.cn

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>