Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New genomic study provides a glimpse of how whales could adapt to ocean

The latest study was published online in Nature Genetics

In a paper published in Nature Genetics, researchers from Korea Institute of Ocean Science and Technology, Korea Genome Research Foundation, BGI, and other institutes presented the first high-depth minke whale genome and their new findings on how whales successfully adapted to ocean environment. The data yielded in this study will contribute to future studies of marine mammal diseases, conservation and evolution.

Whales roam throughout all of the world's oceans, living in the water but breathing air like humans. At the top of the food chain, whales are vital to the health of the marine environment, whereas 7 out of the 13 great whale species are endangered or vulnerable. The minke whale is the most abundant baleen whale. Its wide distribution makes it an ideal candidate for whole reference genome sequencing.

In this study, researchers conducted de novo sequencing on a minke whale with 128x average depth of coverage, and re-sequenced three minke whales, a fin whale (Balaenoptera physalus), a bottlenose dolphin, and a finless porpoise (Neophocaena phocaenoides). The yielded data may help to improve scientists' understanding of the evolutionary changes adapted to ocean environment from whole genome level.

The adaptation of whale to ocean life was notably marked by resistance to physiological stresses caused by a lack of oxygen, increased reactive oxygen species, and high salt level. In this study, researchers investigated a number of whale-specific genes that were strongly associated with stress resistance, such as the peroxiredoxin (PRDX) family, O-linked N-acetylglucosaminylation (O-GlcNAcylation). The results revealed that the gene families associated with stress-responsive proteins and anaerobic metabolism were expanded.

Perhaps the most dramatic environmental adaptation for a whale is deep diving, which can induce hypoxia. Under the hypoxic conditions, the body might produce more reactive oxygen species (ROS), harmful compounds that can damage DNA. Glutathione is a well-known antioxidant that prevents damage to important cellular components by ROS. In this study, researchers provided evidence to support that there is an increased ratio of reduced glutathione/glutathione disulfide when suffering hypoxic or oxidative stress.

Minke whales and other Mysticeti whale species grow baleen instead of teeth. It's previously reported that the genes ENAM, MMP, and AMEL might play a role in tooth enamel formation and biomineralization. This study showed that these genes may be pseudogenes with early stop codons in the baleen whales. In addition, researchers found that the gene families related to whale's body hair and sensory receptors were contracted, such as Keratin-related gene families associated with hair formation, several Hox genes that play an important role in the body plan and embryonic development.

Xuanmin Guang, project manager from BGI, said, "Minke whale is the first marine mammal that has been sequenced with such high-depth genome coverage. The genome data not only can help us know much more about the adaption mechanisms underlying minke whale, but also provides invaluable resource for marine mammal's future studies such as diseases control and prevention, species conservation,and protection."

About BGI

BGI was founded in 1999 with the mission of being a premier scientific partner to the global research community. The goal of BGI is to make leading-edge genomic science highly accessible through its investment in infrastructure that leverages the best available technology, economies of scale, and expert bioinformatics resources. BGI, which includes both private non-profit genomic research institutes and sequencing application commercial units, and its affiliates, BGI Americas, headquartered in Cambridge, MA, and BGI Europe, headquartered in Copenhagen, Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has established a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research which has generated over 250 publications in top-tier journals such as Nature and Science. These accomplishments include sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, most recently, have sequenced the human Gut metagenome, and a significant proportion of the genomes for 1,000 genomes. For more information about BGI please visit

Contact Information:

Bicheng Yang, Ph.D.
Public Communication Officer

Jia Liu | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>