Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genomic marker for tuberculosis may help identify patients who will develop the disease

30.08.2010
Study highlights how blood profiling techniques could change patient care

It may soon be possible to identify patients who will develop tuberculosis, as scientists have identified changes in the blood specific to the disease. These findings are from an international study published in the August 19 issue of Nature and conducted by doctors and researchers at Nationwide Children's Hospital using blood profiling techniques to understand infections.

Tuberculosis (TB) is caused by the bacterium Mycobacterium tuberculosis, which usually attacks the lungs and can be fatal if not treated properly. Although TB is no longer a leading cause of death in the United States, it remains an epidemic in much of the world. One third of the world's total population is infected with the microbes that cause TB; however, most people infected with M. tuberculosis remain asymptomatic with latent TB. People with latent TB have a 10 percent lifetime risk of developing active TB, but current tests can not identify which individuals will develop the disease.

"Tools to diagnose infections like TB, bronchiolitis and pneumonia have been developed and are actively used to classify patients as being infected with specific pathogens, but we are still unable to predict how each person is going to react to the infection," said one of the study's authors Octavio Ramilo, MD, chief of Infectious Diseases at Nationwide Children's Hospital. "It's difficult to predict patient outcomes, and this is a real problem."

To combat this problem, Dr. Ramilo and Asuncion Mejias, MD, investigators at the Center for Vaccines and Immunity in The Research Institute at Nationwide Children's Hospital, are using microarray technology to develop blood profiles in patients specific to infectious diseases.

"Each infectious agent, be it a virus or a bacterium, interacts with human immune cells in unique ways by triggering proteins on white blood cells," said Dr. Mejias. "We can identify patterns among the white blood cell's activated proteins and identify a unique 'signature' for each infectious agent."

Drs. Ramilo and Mejias' – also faculty members at The Ohio State University College of Medicine – research has shown that gene expression microarray technology can be used to help develop blood transcriptional signatures.

"This technology allows us to see the whole picture of infection using a single blood sample, which is a really powerful tool for the clinic," said Dr. Mejias.

It's this gene expression microarray technology that allowed an international group of investigators, of which Drs. Ramilo and Mejias are part of, to provide the first complete description of the blood transcriptional signature of TB.

The study examined and compared blood drawn from patients in London, England and Cape Town, South Africa who had active TB, latent TB or who did not have TB. The team developed genome-wide transcriptional profiles for each of the patients and discovered a distinct characteristic, or "signature," of the blood from patients with active TB. X-rays of patients with this signature were consistent with signs of active TB.

"The study shows for the first time that the transcriptional signature in blood correlates with extent of disease in active TB patients," said Dr. Ramilo. "It validates the idea that this transcriptional signature is an accurate marker of TB infection."

The team also found that a subset of latent TB patients had signatures similar to those in active TB patients.

"The signature of active TB, which was observed in 10 to 20 percent of latent TB patients, may identify those individuals who will develop disease, but longitudinal studies are needed to assess this," said Dr. Ramilo.

The transcriptional signature was diminished in active TB patients after two months and completely extinguished by 12 months after treatment.

"These findings suggest that the blood transcriptional signature of active TB patients could be used to monitor how well a patient's treatment is working," said Dr. Ramilo.

Dr. Mejias says that this study highlights the power that gene expression microarray technology could bring to the diagnosis and treatment of infectious diseases, as the blood transcriptional signatures are not limited to TB. Currently, the infectious disease investigators at Nationwide Children's Hospital are developing transcriptional signatures using blood samples obtained from children with broncholitis and pneumonia and plan to correlate findings with clinical outcomes, similar to the recent TB study.

"It seems that we are developing a tool that can not only diagnose infectious diseases, but also indicate severity and eventually predict which patients are at risk for developing advanced symptoms. These capabilities are desperately needed in order to improve how patients recover from infections," said Dr. Ramilo.

Mary Ellen Peacock | EurekAlert!
Further information:
http://www.NationwideChildrens.org

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>