Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic Fault Zones Come and Go

02.12.2010
Pavel Pevzner is a UC San Diego computer science professor and an author on the new study. Pevzner studies genomes and genome evolution from a computational perspective in the Department of Computer Science and Engineering at the UC San Diego Jacobs School of Engineering.

The fragile regions in mammalian genomes that are thought to play a key role in evolution go through a "birth and death" process, according to new bioinformatics research performed at the University of California, San Diego. The new work, published in the journal Genome Biology on November 30, could help researchers identify the current fragile regions in the human genome – information that may reveal how the human genome will evolve in the future.

“The genomic architecture of every species on Earth changes on the evolutionary time scale and humans are not an exception. What will be the next big change in the human genome remains unknown, but our approach could be useful in determining where in the human genome those changes may occur,” said Pavel Pevzner, a UC San Diego computer science professor and an author on the new study. Pevzner studies genomes and genome evolution from a computational perspective in the Department of Computer Science and Engineering at the UC San Diego Jacobs School of Engineering.

The fragile regions of genomes are prone to “genomic earthquakes” that can trigger chromosome rearrangements, disrupt genes, alter gene regulation and otherwise play an important role in genome evolution and the emergence of new species. For example, humans have 23 chromosomes while some other apes have 24 chromosomes, a consequence of a genome rearrangement that fused two chromosomes in our ape ancestor into human chromosome 2.

This work was performed by Pevzner and Max Alekseyev – a computer scientist who recently finished his Ph.D. in the Department of Computer Science and Engineering at the UC San Diego Jacobs School of Engineering. Alekseyev is now a computer science professor at the University of South Carolina.

Turnover Fragile Breakage Model

“The main conclusion of the new paper is that these fragile regions are moving,” said Pevzner.

In 2003, Pevzner and UC San Diego mathematics professor Glen Tesler published results claiming that genomes have “fault zones” or genomic regions that are more prone to rearrangements than other regions. Their “Fragile Breakage Model” countered the then largely accepted “Random Breakage Model” – which implies that there are no rearrangement hotspots in mammalian genomes. While the Fragile Breakage Model has been supported by many studies in the last seven years, the precise locations of fragile regions in the human genome remain elusive.

The new work published in Genome Biology offers an update to the Fragile Breakage Model called the “Turnover Fragile Breakage Model.” The findings demonstrate that the fragile regions undergo a birth and death process over evolutionary timescales and provide a clue to where the fragile regions in the human genome are located.

Do the Math: Find Fragile Regions

Finding the fragile regions within genomes is akin to looking at a mixed up deck of cards and trying to determine how many times it has been shuffled.

Looking at a genome, you may identify breaks, but to say it is a fragile region, you have to know that breaks occurred more than once at the same genomic position. “We are figuring out which regions underwent multiple genome earthquakes by analyzing the present-day genomes that survived these earthquakes that happened millions of years ago. The notion of rearrangements cannot be applied to a single genome at a single point in time. It’s relevant when looking at more than one genome,” said Pevzner, explaining the comparative genomics approach they took.

“It was noticed that while fragile regions may be shared across different genomes, most often such shared fragile regions are found in evolutionarily close genomes. This observation led us to a conclusion that fragility of any particular genomic position may appear only for a limited amount of time. The newly proposed Turnover Fragile Breakage Model postulates that fragile regions are subject to a ‘birth and death’ process and thus have limited lifespan,” explained Alekseyev.

The Turnover Fragile Breakage Model suggests that genome rearrangements are more likely to occur at the sites where rearrangements have recently occurred – and that these rearrangement sites change over tens of millions of years. Thus, the best clue to the current locations of fragile regions in the human genome is offered by rearrangements that happened in our closest ancestors – chimpanzee and other primates.

Pevzner is eagerly awaiting sequenced primate genomes from the Genome 10K Project. Sequencing the genomes of 10,000 vertebrate species – including 100s of primates – is bound to provide new insights on human evolutionary history and possibly even the future rearrangements in the human genome.

“The most likely future rearrangements in human genome will happen at the sites that were recently disrupted in primates,” said Pevzner.

Work tied to the new Turnover Fragile Breakage Model may also be useful for understanding genome rearrangements at the level of individuals, rather than entire species. In the future, the computer scientists hope to use similar tools to look at the chromosomal rearrangements that occur within the cells of individual cancer patients in order to develop new cancer diagnostics and drugs.

Pavel Pevzner is the Ronald R. Taylor Professor of Computer Science at UC San Diego; Director of the NIH Center for Computational Mass Spectrometry; and a Howard Hughes Medical Institute (HHMI) Professor.

“Comparative Genomics Reveals Birth and Death of Fragile Regions in Mammalian Evolution,” in Genome Biology,Volume 11 Issue 11,by Max A. Alekseyev from the Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, USA; and Pavel A. Pevzner from the Department of Computer Science and Engineering, University of California, San Diego, CA, USA."

Daniel Kane | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Lipid nanodiscs stabilize misfolding protein intermediates red-handed
18.12.2017 | Technische Universität München

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>