Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic data are growing, but what do we really know?

21.03.2013
A large-scale evaluation of computational protein function prediction: a new publication in Nature Methods, with 15 companion publications in BMC Bioinformatics

"We live in the post-genomic era, when DNA sequence data is growing exponentially", says Miami University (Ohio) computational biologist Iddo Friedberg. "But for most of the genes that we identify, we have no idea of their biological functions.

They are like words in a foreign language, waiting to be deciphered." Understanding the function of genes is a problem that has emerged at the forefront of molecular biology. Many groups develop and employ sophisticated algorithms to decipher these "words". However, until now there was no comprehensive picture of how well these methods perform, "To use the information in our genes to our advantage, we first need to take stock of how well we are doing in interpreting these data".

To do so, Friedberg and his colleagues, Predrag Radivojac, of Indiana University, Bloomington IN and Sean Mooney, Buck Institute for Research on Aging, Novato CA organized the Critical Assessment of protein Function Annotation, or CAFA. CAFA is a community-wide experiment to assess the performance of the many methods used today to predict the functions of proteins, the workhorses of the cell coded by our genes.

Thirty research groups comprising 102 scientists and students participated in CAFA, presented a total of 54 methods. The participating groups came from leading universities in North America, Europe, Asia and Australia. The groups participated in blind-test experiments in which they predicted the function of protein sequences for which the functions are already known but haven't yet been made publicly available. Independent assessors then judged their performance.

The results are published in this month's issue of Nature Methods co-authored by members of all the participating groups, with Friedberg and Radivojac as lead authors. Fifteen companion papers have been published in a special issue of BMC Bioinformatics detailing the methods

"We have discovered a great enthusiasm and community spirit", said Friedberg, who since 2005 has been organizing Automated Function Prediction (AFP) meetings internationally. This, despite the competitive environment in which research groups want their methods to perform better than their peers' methods. Overall, throughout CAFA there was a highly collegial spirit, and a willingness to share information and science. "Everyone recognized that this is an important endeavor, and that only by a group effort can we move the field forward and learn to harness the deluge of genomic data, turning it into useful information."

"For the first time we have broad insight into what works, where improvement is needed, and how we should move the field forward. We will continue running CAFA in the future, as we are confident it will only help generate better methods to understand the information locked in our genomes, and those of other organisms," Friedberg said.

The initial analysis suggests that algorithms combining disparate prediction clues taken from different knowledge-bases provide more accurate predictions. The lead methods combined data from phylogenetic, gene-expression and protein-protein interaction data to provide predictions.

CAFA was funded by grants from the National Institutes of Health, and from the Department of Energy, section of Biological and Environmental Research.

Sources:

Radivojac et al, Nature Methods: http://www.nature.com/nmeth/journal/v10/n3/full/nmeth.2340.html

BMC Bioinformatics companion papers: http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S3

The Automated Function Prediction Special Interest Group web site: http://biofunctionprediciton.org

Iddo Friedberg | EurekAlert!
Further information:
http://www.miamioh.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>