Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic comparison of ocean microbes reveals East-West divide in populations

12.10.2010
Much as an anthropologist can study populations of people to learn about their physical attributes, their environs and social structures, some marine microbiologists read the genome of microbes to glean information about the microbes themselves, their environments and lifestyles.

Using a relatively new methodology called comparative population genomics, these scientists compare the entire genomes of different populations of the same microbe to see which genes are "housekeeping" or core genes essential to all populations and which are population-specific.

Scientists are able to read a genome and translate the genes into proteins that serve particular functions. Population-specific genes sometimes tell a very clear story about the environment, for instance temperature and the availability of light and particular elements, and over time, they can point to the microbes' evolutionary adaptation to changes in the ecosystem.

Occasionally, as was the case with recent research at MIT, the population-specific genes reveal this information with crystal clarity, even providing unmistakable clues about lifestyle.

Professor Sallie (Penny) W. Chisholm of MIT's Department of Civil and Environmental Engineering (CEE) and former doctoral student Maureen Coleman compared the genetic makeup of two populations of the same oceanic photosynthetic bacterium, Prochlorococcus, one living in the Atlantic Ocean and one in the Pacific.

They found that although a continent separates the populations, they differ significantly in only one respect: those in the Atlantic have many more genes specifically related to the scavenging of phosphorus, an essential element for these microbes. And just as the variations in the beaks of Darwin's finches were evolutionary adaptations related to food availability, so too are the variations in the Prochlorococcus genes related to phosphorous gathering. Both are examples of a powerful evolutionary force at work.

"We expected to see some difference in the genes related to phosphorous, because the Atlantic Ocean has an order of magnitude lower concentration of phosphorus than the Pacific, so Atlantic populations of Prochlorococcus carry many more genes involved in extracting phosphorus from the seawater. They need more creative ways of gathering it. But we didn't expect it to be the only difference," said Chisholm. "This indicates that phosphorus availability is the dominant selective force in defining these populations."

The researchers also noted that the microbes in the Atlantic Ocean had increased numbers of phosphorous-related genes that helped them neutralize arsenic, an element they sometimes take up by mistake when they're scavenging for phosphorous. This finding "buttresses the assertion" that this is the result of a strong selective process, Chisholm said.

"We're really diagnosing the ecosystem using a specific species of microbe as a reporter," said Chisholm. "We're letting the cells tell us what they have to deal with in their environment."

She and Coleman also compared the genomes of two populations of a neighboring bacterium, Pelagibacter, and found that genes related to phosphorus gathering in that bacterium appear in far greater numbers in the Atlantic Ocean population, but with a twist. These microbes have a somewhat different repertoire of phosphorus-related genes, suggesting subtle differences between these two microbial groups with respect to how they scavenge phosphorus. This could reflect an adaptive behavior known as "niche partitioning," which allows cells sharing a microenvironment to apportion resources according to a cell's "lifestyle" rather than all competing for the same element or same form of that element.

To obtain these findings, which will appear in the online Early Edition of the Proceedings of the National Academy of Sciences the week of Oct. 11, the two scientists used the complete genomes of 13 strains of lab-cultured Prochlorococcus and Pelagibacter as reference genes, and compared these with the genes of well-documented wild microbe populations gathered at long-term oceanographic study stations near Bermuda (BATS) and Hawaii (HOTS). The work was funded by the Gordon and Betty Moore Foundation, the National Science Foundation and the U.S. Department of Energy.

The next step in this research is to make similar studies at different depths and locations to study the effects of temperature and chemical gradients on the genomes of microbial populations.

"How fast marine microbes adapt to environmental change is a big unknown," said Coleman, who is now a postdoctoral associate at Caltech. "One way to address this is to sample the population genomes over time, with parallel environmental monitoring. We might then be able to catch evolution in action. Long term study sites like HOT and BATS are crucial for this effort."

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>