Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic comparison of ocean microbes reveals East-West divide in populations

12.10.2010
Much as an anthropologist can study populations of people to learn about their physical attributes, their environs and social structures, some marine microbiologists read the genome of microbes to glean information about the microbes themselves, their environments and lifestyles.

Using a relatively new methodology called comparative population genomics, these scientists compare the entire genomes of different populations of the same microbe to see which genes are "housekeeping" or core genes essential to all populations and which are population-specific.

Scientists are able to read a genome and translate the genes into proteins that serve particular functions. Population-specific genes sometimes tell a very clear story about the environment, for instance temperature and the availability of light and particular elements, and over time, they can point to the microbes' evolutionary adaptation to changes in the ecosystem.

Occasionally, as was the case with recent research at MIT, the population-specific genes reveal this information with crystal clarity, even providing unmistakable clues about lifestyle.

Professor Sallie (Penny) W. Chisholm of MIT's Department of Civil and Environmental Engineering (CEE) and former doctoral student Maureen Coleman compared the genetic makeup of two populations of the same oceanic photosynthetic bacterium, Prochlorococcus, one living in the Atlantic Ocean and one in the Pacific.

They found that although a continent separates the populations, they differ significantly in only one respect: those in the Atlantic have many more genes specifically related to the scavenging of phosphorus, an essential element for these microbes. And just as the variations in the beaks of Darwin's finches were evolutionary adaptations related to food availability, so too are the variations in the Prochlorococcus genes related to phosphorous gathering. Both are examples of a powerful evolutionary force at work.

"We expected to see some difference in the genes related to phosphorous, because the Atlantic Ocean has an order of magnitude lower concentration of phosphorus than the Pacific, so Atlantic populations of Prochlorococcus carry many more genes involved in extracting phosphorus from the seawater. They need more creative ways of gathering it. But we didn't expect it to be the only difference," said Chisholm. "This indicates that phosphorus availability is the dominant selective force in defining these populations."

The researchers also noted that the microbes in the Atlantic Ocean had increased numbers of phosphorous-related genes that helped them neutralize arsenic, an element they sometimes take up by mistake when they're scavenging for phosphorous. This finding "buttresses the assertion" that this is the result of a strong selective process, Chisholm said.

"We're really diagnosing the ecosystem using a specific species of microbe as a reporter," said Chisholm. "We're letting the cells tell us what they have to deal with in their environment."

She and Coleman also compared the genomes of two populations of a neighboring bacterium, Pelagibacter, and found that genes related to phosphorus gathering in that bacterium appear in far greater numbers in the Atlantic Ocean population, but with a twist. These microbes have a somewhat different repertoire of phosphorus-related genes, suggesting subtle differences between these two microbial groups with respect to how they scavenge phosphorus. This could reflect an adaptive behavior known as "niche partitioning," which allows cells sharing a microenvironment to apportion resources according to a cell's "lifestyle" rather than all competing for the same element or same form of that element.

To obtain these findings, which will appear in the online Early Edition of the Proceedings of the National Academy of Sciences the week of Oct. 11, the two scientists used the complete genomes of 13 strains of lab-cultured Prochlorococcus and Pelagibacter as reference genes, and compared these with the genes of well-documented wild microbe populations gathered at long-term oceanographic study stations near Bermuda (BATS) and Hawaii (HOTS). The work was funded by the Gordon and Betty Moore Foundation, the National Science Foundation and the U.S. Department of Energy.

The next step in this research is to make similar studies at different depths and locations to study the effects of temperature and chemical gradients on the genomes of microbial populations.

"How fast marine microbes adapt to environmental change is a big unknown," said Coleman, who is now a postdoctoral associate at Caltech. "One way to address this is to sample the population genomes over time, with parallel environmental monitoring. We might then be able to catch evolution in action. Long term study sites like HOT and BATS are crucial for this effort."

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>