Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic Comparison of Multi-Drug Resistant, Invasive Acinetobacter Reveals Genomic Plasticity

14.06.2011
An interdisciplinary team of scientists at the University of Maryland School of Medicine investigated whether the multi-drug resistant Acinetobacter baumannii isolated from diverse human body sites encoded genetic features that could be correlated to their isolation source.

Published 2011 June 4;12(1):291[Epub ahead of print], in BMC Genomics, the results of comparison using a whole genome approach with three isolates and focused PCR assay on over 70 isolates demonstrated that A. baumannii is a diverse and genomically variable pathogen that appears to have the potential to cause a range of human disease, regardless of the isolation source.

Acinetobacter baumannii has emerged as a significant global pathogen, due to its persistence in the hospital environment, rapid acquisition of antibiotic resistance and the broad spectra of its antimicrobial resistance patterns. It has spread rapidly within hospitals and health care institutions. These features have made A. baumannii a highly studied emerging pathogen in the heath care setting.

This study could have only been completed with the assembled interdisciplinary team of epidemiologists, clinical laboratory personnel, bioinformaticians and microbial genomics researchers from the Institute for Genome Sciences (IGS) and Epidemiology & Public Health at the University of Maryland School of Medicine.

Dr. Anthony Harris, Director of the Division of Genomic Epidemiology and Clinical Outcomes and co-author on the paper highlights that "additional genomic research needs to be done to elucidate why Acinetobacter baumanii has emerged as a hospital pathogen and what is contributing to its patient-to-patient spread. This study gets us closer to that goal".

“This study provides insight into the genomic variability of A. baumannii within a hospital setting and body sites, which will allow us a better understanding of the basic processes of this emerging pathogen.” commented Dr. Rasko, the corresponding author on the study.

Sarah Pick | Newswise Science News
Further information:
http://www.umaryland.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>