Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genomic Comparison of Multi-Drug Resistant, Invasive Acinetobacter Reveals Genomic Plasticity

An interdisciplinary team of scientists at the University of Maryland School of Medicine investigated whether the multi-drug resistant Acinetobacter baumannii isolated from diverse human body sites encoded genetic features that could be correlated to their isolation source.

Published 2011 June 4;12(1):291[Epub ahead of print], in BMC Genomics, the results of comparison using a whole genome approach with three isolates and focused PCR assay on over 70 isolates demonstrated that A. baumannii is a diverse and genomically variable pathogen that appears to have the potential to cause a range of human disease, regardless of the isolation source.

Acinetobacter baumannii has emerged as a significant global pathogen, due to its persistence in the hospital environment, rapid acquisition of antibiotic resistance and the broad spectra of its antimicrobial resistance patterns. It has spread rapidly within hospitals and health care institutions. These features have made A. baumannii a highly studied emerging pathogen in the heath care setting.

This study could have only been completed with the assembled interdisciplinary team of epidemiologists, clinical laboratory personnel, bioinformaticians and microbial genomics researchers from the Institute for Genome Sciences (IGS) and Epidemiology & Public Health at the University of Maryland School of Medicine.

Dr. Anthony Harris, Director of the Division of Genomic Epidemiology and Clinical Outcomes and co-author on the paper highlights that "additional genomic research needs to be done to elucidate why Acinetobacter baumanii has emerged as a hospital pathogen and what is contributing to its patient-to-patient spread. This study gets us closer to that goal".

“This study provides insight into the genomic variability of A. baumannii within a hospital setting and body sites, which will allow us a better understanding of the basic processes of this emerging pathogen.” commented Dr. Rasko, the corresponding author on the study.

Sarah Pick | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>