Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic atlas of gene switches in plants provides roadmap for crop research

01.07.2013
Canadian-led study will help scientists identify key genomic regions in canola, other food plants

What allows certain plants to survive freezing and thrive in the Canadian climate, while others are sensitive to the slightest drop in temperature? Those that flourish activate specific genes at just the right time -- but the way gene activation is controlled remains poorly understood.

A major step forward in understanding this process lies in a genomic map produced by an international consortium led by scientists from McGill University and the University of Toronto and published online today in the journal Nature Genetics.

The map, which is the first of its kind for plants, will help scientists to localize regulatory regions in the genomes of crop species such as canola, a major crop in Canada, according to researchers who worked on the project. The team has sequenced the genomes of several crucifers (a large plant family that includes a number of other food crops) and analyzed them along with previously published genomes to map more than 90,000 genomic regions that have been highly conserved but that do not appear to encode proteins.

"These regions are likely to play important roles in turning genes on or off, for example to regulate a plant's development or its response to environmental conditions," says McGill computer-science professor Mathieu Blanchette, one of the leaders of the study. Work is currently underway to identify which of those regions may be involved in controlling traits of particular importance to farmers.

The study also weighs in on a major debate among biologists, concerning how much of an organism's genome has important functions in a cell, and how much is "junk DNA," merely along for the ride. While stretches of the genome that code for proteins are relatively easy to identify, many other 'noncoding' regions may be important for regulating genes, activating them in the right tissue and under the right conditions.

While humans and plants have very similar numbers of protein-coding genes, the map published in Nature Genetics further suggests that the regulatory sequences controlling plant genes are far simpler, with a level of complexity between that of fungi and microscopic worms. "These findings suggest that the complexity of different organisms arises not so much from what genes they contain, but how they turn them on and off," says McGill biology professor Thomas Bureau, a co-author of the paper.

Funding for the research was provided by Genome Canada and Génome Québec, along with the European Regional Development Fund, the Czech Science Foundation, and the National Science Foundation.

Mathieu Blanchette | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>