Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome yields insights into golden eagle vision, smell

25.04.2014

Purdue and West Virginia University researchers are the first to sequence the genome of the golden eagle, providing a bird's-eye view of eagle features that could lead to more effective conservation strategies.

Their study calls into question long-held assumptions about golden eagle vision, indicating that the raptors may not be as sensitive to ultraviolet light as previously thought. The genome also suggests that golden eagles could have a sharper sense of smell than researchers realized.


This is a golden eagle.

Credit: Todd Katzner

Additionally, the genome provides thousands of genetic markers that will help researchers track populations and monitor eagle mortality.

"Having the golden eagle genome in hand could directly affect the way we make conservation and management decisions," said Jacqueline Doyle, postdoctoral research associate and first author of the paper.

Though it is one of the most widespread avian species, the golden eagle is threatened throughout much of its range by poaching, shrinking habitats and fatal collisions with wind turbines. An estimated 67 golden eagles are killed annually at a single wind farm - the Altamont Pass Wind Resource Area in central California - a heavy toll on a species that reproduces slowly and can live up to 30 years, said J. Andrew DeWoody, professor of genetics and senior author of the study.

One recently proposed method of reducing turbine-related eagle deaths was to coat wind turbines with ultraviolet-reflective paint, thereby heightening their visibility to eagles, which were thought to be sensitive to ultraviolet light. But the golden eagle genome suggests that eagle vision is rooted in the violet spectrum - like human sight - rather than the ultraviolet.

"We find little genomic evidence that golden eagles are sensitive to ultraviolet light," Doyle said. "Painting wind turbines with ultraviolet-reflective paint is probably not going to prevent eagles from colliding with turbines."

Analysis of the genome also revealed that golden eagles have far more genes associated with smell than previously realized, indicating that the birds might use smell to locate prey more than researchers thought.

Doyle used the genome to identify thousands of genetic markers that together could act as a DNA "fingerprint," allowing researchers to distinguish individual birds, follow them in a population and determine population size and flux, parentage and genetic variation.

DeWoody said the markers would also help scientists track the evolution of different families of genes and identify potential golden eagle pathogens, parasites and symbiotic organisms.

The researchers generated the genome by extracting DNA from a blood sample of a golden eagle that was captured with a spring-loaded net in California. The eagle was outfitted with a Global Positioning System tracking device before its release, making it possibly the first animal to have its genome sequenced and be tracked at the same time, DeWoody said.

Team leader Todd Katzner, a research assistant professor at West Virginia University, said the GPS device could allow the team to relate the individual movements and behavior of the golden eagle to its genome.

DeWoody said the golden eagle "truly represents the wild. We want to preserve and conserve this species for future generations, and the genome will improve our ability to do that."

###

The paper was published Wednesday (April 23) in PLOS ONE and is available at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0095599.

The U.S. Bureau of Land Management, the California Department of Fish and Wildlife and the Purdue University Provost's Office provided funding for the research.

Natalie van Hoose | Eurek Alert!

Further reports about: DNA DeWoody Genome Golden eagles eagle genes markers species ultraviolet

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>