Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide scan maps mutations in deadly lung cancers; reveals embryonic gene link

06.09.2012
Scientists have completed a comprehensive map of genetic mutations linked to an aggressive and lethal type of lung cancer.

Among the errors found in small cell lung cancers, the team of scientists, including those at the Johns Hopkins Kimmel Cancer Center, found an alteration in a gene called SOX2 associated with early embryonic development.

"Small cell lung cancers are very aggressive. Most are found late, when the cancer has spread and typical survival is less than a year after diagnosis," says Charles Rudin, M.D., Ph.D., professor of oncology at the Johns Hopkins Kimmel Cancer Center. "Our genomic studies may help identify genetic pathways responsible for the disease and give us new ideas on developing drugs to treat it."

The scientists found an increase in the copy number of the SOX2 gene in about 27 percent of small cell lung cancer samples. The resulting overproduction of proteins made by the SOX2 gene may play a role in igniting or sustaining abnormal cell growth in the lung. SOX2 offers a new target for scientists working to develop new drugs to combat this intractable cancer, say the investigators.

For the study, published online Sept. 2 in Nature Genetics, colleagues from Johns Hopkins, Genentech, the University of Texas Southwestern Medical Center and the University of Colorado Cancer Center scanned the genome's coding regions of 63 small cell lung cancers, including 42 with matching samples from patients' normal cells.

The scientific team scanned 56 of the samples for evidence of "amplification," a cellular process seen in cancer in which cancer cells acquire more than the typical two gene copies inherited from each parent. They found that one of the genes, SOX2, was amplified, in about 27 percent of the samples (15 of 56). SOX2 encodes a protein complex that binds to DNA and controls when and how genes are decoded to make other proteins. It has been linked to tissue and organ development in embryonic cells, and is one of the four genes used by scientists to convert adult cells into an embryonic state.

The scientists confirmed SOX2 amplification in an independent set of 110 small cell lung cancers. This amplification, they found, causes cells to overproduce SOX2 proteins and may promote growth that leads to cancer. Samples with amplified SOX2 also correlated with patients who had more advanced disease. "SOX2 is an important clue in finding new ways to treat small cell lung cancer," says Rudin. "We may be able to link a patient's outcome to this gene and develop a drug to target it or other genes it regulates." Rudin says his team will further explore the function of SOX2 and how to target it.

In addition to amplification, the study mapped errors in the genome's sequence and protein production levels.

In a second report appearing in the Sept. 2 issue of Nature Genetics, scientists from Germany and elsewhere completed another genome wide scan of small cell lung cancers and focused on changes in several genes, including FGFR1, a growth factor previously linked to cancer development. Rudin says FGFR1 may prove to be a rare but significant change among small cell lung cancers.

Funding support for the research came from the Burroughs Wellcome Fund, the Flight Attendant Medical Research Institute, the National Cancer Institute which is part of the National Institutes of Health (P50CA058184, P50CA70907, P50CA058187), the CAPES Foundation and Ministry of Education of Brazil.

Scientists contributing to the work include John T. Poirier, Emily A. Bergbower, James Shin, Peter B. Illei and Malcolm V. Brock from Johns Hopkins; Steffen Durinck, Eric W. Stawiski, Zora Modrusan, David S. Shames, Yinghui Guan, Joseph Guillory, Celina Sanchez Rivers, Catherine K. Foo, Deepali Bhatt, Jeremy Stinson, Florian Gnad, Peter M. Haverty, Robert Gentleman, Subhra Chaudhuri, Vasantharajan Janakiraman, Bijay S. Jaiswal, Chaitali Parikh, Wenlin Yuan, Zemin Zhang, Hartmut Koeppen, Thomas D. Wu, Howard M. Stern, Robert L. Yauch, Frederic J. de Sauvage, Richard Bourgon and Somasekar Seshagiri from Genentech; Kenneth E. Huffman, Adi F. Gazdar and John D. Minna from the University of Texas Southwestern Medical Center; and Diego D. Paskulin and Marileila Varella-Garcia from the University of Colorado Cancer Center.

Rudin has previously consulted for Genentech. Illei is a consultant for Leica Microsystems, manufacturer of a device used in this study. The terms of these arrangements are being managed by The Johns Hopkins University in accordance with its conflict of interest policies.

More information:

Nature Genetics: http://www.nature.com/ng/journal/vaop/ncurrent/abs/ng.2405.html

Vanessa Wasta | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>