Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide association studies mislead on cardiac arrhythmia risk gene

21.03.2014

Although genome-wide association studies have linked DNA variants in the gene SCN10A with increased risk for cardiac arrhythmia, efforts to determine the gene's direct influence on the heart's electrical activity have been unproductive.

Now, scientists from the University of Chicago have discovered that these SCN10A variants regulate the function of a different gene, SCN5A, which appears to be the primary gene responsible for cardiac arrhythmia risk. The SCN10A gene itself plays only a minimal role in the heart, according to the study, published in the Journal of Clinical Investigation on March 18.

"Significant effort has been invested into understanding the function of SCN10A in cardiac rhythm control, with underwhelming results," said study co-leader Ivan Moskowitz MD, PhD, associate professor of pediatrics, pathology and human genetics at the University of Chicago. "It turns out that the genetic variation within SCN10A that confers arrhythmia risk actually functions on a different gene. This study highlights the fact that DNA variation associated with disease can have regulatory impact on functional targets located a considerable distance away."

Mutations within the SCN10A gene are linked with increased risk of Brugada Syndrome, which causes cardiac arrhythmias and is a leading cause of death amongst youth in some parts of the world. Genome-wide association studies—large scale experiments that look for genetic variants across the human genome with statistical associations to certain traits or diseases—were used to identify these variants, but follow-up studies have been unable to determine their function.

Curious about previous ambiguous results, Moskowitz and his colleagues looked for other genes with links to SCN10A. First, they discovered that the region of SCN10A that conferred arrhythmia risk physically contacted a neighboring gene—SCN5A—which is well-known to have an important role in cardiac arrhythmias and sudden cardiac death. They then showed that these contacts are functional, and that by removing the implicated sequences from SCN10A, expression of SCN5A was profoundly diminished.

When they analyzed large-scale human data, the team found that the SCN10A variant originally identified for Brugada Syndrome risk was associated with lowered levels of SCN5A. But the variant had no detectable effect on the levels of SCN10A.

Taken together, the evidence suggests that any link between SCN10A and cardiac arrhythmia is due to its connection with SCN5A expression. Through the results of this study, Moskowitz believes scientists will now focus on the correct gene, SCN5A, to better understand genetic risk for cardiac arrhythmia and hopes this will lead to more accurate diagnostics and potential therapies in the future.

This study also illustrates how highly-publicized genome-wide association studies can be misleading for researchers. Study co-leader Marcelo Nobrega, PhD, an associate professor of human genetics at the University of Chicago, published a similar finding for a gene associated with obesity, on March 12th in Nature.

"Genome-wide association studies have been very successful in implicating genetic variation associated with a host of human diseases and traits," Moskowitz said. "However cases like this study demonstrate that we must be more careful to evaluate the functional target of genome-wide association study hits, before we jump to conclusions that can have costly implications for how we investigate human health and generate disease diagnostics and therapies."

###

The study, "A common genetic variant within SCN10A modulates cardiac SCN5A expression," was funded by the National Institutes of Health, the European Community's Seventh Framework Programme contract, the Cardiovascular Onderzoek Nederland, the German Foundation for Heart Research and the Federal Ministry of Education and Research. Additional authors include Malou van den Boogaard, Scott Smemo, Ozanna Burnicka-Turek, David E. Arnolds, Harmen J.G. van de Werken, Petra Klous, David McKean, Jochen D. Muehlschlegel, Julia Moosmann, Okan Toka, Xinan H. Yang, Tamara T. Koopmann, Michiel E. Adriaens, Connie R. Bezzina, Wouter de Laat, Christine Seidman, J.G. Seidman, Vincent M. Christoffels and Phil Barnett.

Kevin Jiang | EurekAlert!
Further information:
http://www.uchospitals.edu

Further reports about: Medical SCN10A arrhythmias cardiac function genome-wide levels variant

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>