Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide association studies mislead on cardiac arrhythmia risk gene

21.03.2014

Although genome-wide association studies have linked DNA variants in the gene SCN10A with increased risk for cardiac arrhythmia, efforts to determine the gene's direct influence on the heart's electrical activity have been unproductive.

Now, scientists from the University of Chicago have discovered that these SCN10A variants regulate the function of a different gene, SCN5A, which appears to be the primary gene responsible for cardiac arrhythmia risk. The SCN10A gene itself plays only a minimal role in the heart, according to the study, published in the Journal of Clinical Investigation on March 18.

"Significant effort has been invested into understanding the function of SCN10A in cardiac rhythm control, with underwhelming results," said study co-leader Ivan Moskowitz MD, PhD, associate professor of pediatrics, pathology and human genetics at the University of Chicago. "It turns out that the genetic variation within SCN10A that confers arrhythmia risk actually functions on a different gene. This study highlights the fact that DNA variation associated with disease can have regulatory impact on functional targets located a considerable distance away."

Mutations within the SCN10A gene are linked with increased risk of Brugada Syndrome, which causes cardiac arrhythmias and is a leading cause of death amongst youth in some parts of the world. Genome-wide association studies—large scale experiments that look for genetic variants across the human genome with statistical associations to certain traits or diseases—were used to identify these variants, but follow-up studies have been unable to determine their function.

Curious about previous ambiguous results, Moskowitz and his colleagues looked for other genes with links to SCN10A. First, they discovered that the region of SCN10A that conferred arrhythmia risk physically contacted a neighboring gene—SCN5A—which is well-known to have an important role in cardiac arrhythmias and sudden cardiac death. They then showed that these contacts are functional, and that by removing the implicated sequences from SCN10A, expression of SCN5A was profoundly diminished.

When they analyzed large-scale human data, the team found that the SCN10A variant originally identified for Brugada Syndrome risk was associated with lowered levels of SCN5A. But the variant had no detectable effect on the levels of SCN10A.

Taken together, the evidence suggests that any link between SCN10A and cardiac arrhythmia is due to its connection with SCN5A expression. Through the results of this study, Moskowitz believes scientists will now focus on the correct gene, SCN5A, to better understand genetic risk for cardiac arrhythmia and hopes this will lead to more accurate diagnostics and potential therapies in the future.

This study also illustrates how highly-publicized genome-wide association studies can be misleading for researchers. Study co-leader Marcelo Nobrega, PhD, an associate professor of human genetics at the University of Chicago, published a similar finding for a gene associated with obesity, on March 12th in Nature.

"Genome-wide association studies have been very successful in implicating genetic variation associated with a host of human diseases and traits," Moskowitz said. "However cases like this study demonstrate that we must be more careful to evaluate the functional target of genome-wide association study hits, before we jump to conclusions that can have costly implications for how we investigate human health and generate disease diagnostics and therapies."

###

The study, "A common genetic variant within SCN10A modulates cardiac SCN5A expression," was funded by the National Institutes of Health, the European Community's Seventh Framework Programme contract, the Cardiovascular Onderzoek Nederland, the German Foundation for Heart Research and the Federal Ministry of Education and Research. Additional authors include Malou van den Boogaard, Scott Smemo, Ozanna Burnicka-Turek, David E. Arnolds, Harmen J.G. van de Werken, Petra Klous, David McKean, Jochen D. Muehlschlegel, Julia Moosmann, Okan Toka, Xinan H. Yang, Tamara T. Koopmann, Michiel E. Adriaens, Connie R. Bezzina, Wouter de Laat, Christine Seidman, J.G. Seidman, Vincent M. Christoffels and Phil Barnett.

Kevin Jiang | EurekAlert!
Further information:
http://www.uchospitals.edu

Further reports about: Medical SCN10A arrhythmias cardiac function genome-wide levels variant

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>