Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome-wide association studies mislead on cardiac arrhythmia risk gene

21.03.2014

Although genome-wide association studies have linked DNA variants in the gene SCN10A with increased risk for cardiac arrhythmia, efforts to determine the gene's direct influence on the heart's electrical activity have been unproductive.

Now, scientists from the University of Chicago have discovered that these SCN10A variants regulate the function of a different gene, SCN5A, which appears to be the primary gene responsible for cardiac arrhythmia risk. The SCN10A gene itself plays only a minimal role in the heart, according to the study, published in the Journal of Clinical Investigation on March 18.

"Significant effort has been invested into understanding the function of SCN10A in cardiac rhythm control, with underwhelming results," said study co-leader Ivan Moskowitz MD, PhD, associate professor of pediatrics, pathology and human genetics at the University of Chicago. "It turns out that the genetic variation within SCN10A that confers arrhythmia risk actually functions on a different gene. This study highlights the fact that DNA variation associated with disease can have regulatory impact on functional targets located a considerable distance away."

Mutations within the SCN10A gene are linked with increased risk of Brugada Syndrome, which causes cardiac arrhythmias and is a leading cause of death amongst youth in some parts of the world. Genome-wide association studies—large scale experiments that look for genetic variants across the human genome with statistical associations to certain traits or diseases—were used to identify these variants, but follow-up studies have been unable to determine their function.

Curious about previous ambiguous results, Moskowitz and his colleagues looked for other genes with links to SCN10A. First, they discovered that the region of SCN10A that conferred arrhythmia risk physically contacted a neighboring gene—SCN5A—which is well-known to have an important role in cardiac arrhythmias and sudden cardiac death. They then showed that these contacts are functional, and that by removing the implicated sequences from SCN10A, expression of SCN5A was profoundly diminished.

When they analyzed large-scale human data, the team found that the SCN10A variant originally identified for Brugada Syndrome risk was associated with lowered levels of SCN5A. But the variant had no detectable effect on the levels of SCN10A.

Taken together, the evidence suggests that any link between SCN10A and cardiac arrhythmia is due to its connection with SCN5A expression. Through the results of this study, Moskowitz believes scientists will now focus on the correct gene, SCN5A, to better understand genetic risk for cardiac arrhythmia and hopes this will lead to more accurate diagnostics and potential therapies in the future.

This study also illustrates how highly-publicized genome-wide association studies can be misleading for researchers. Study co-leader Marcelo Nobrega, PhD, an associate professor of human genetics at the University of Chicago, published a similar finding for a gene associated with obesity, on March 12th in Nature.

"Genome-wide association studies have been very successful in implicating genetic variation associated with a host of human diseases and traits," Moskowitz said. "However cases like this study demonstrate that we must be more careful to evaluate the functional target of genome-wide association study hits, before we jump to conclusions that can have costly implications for how we investigate human health and generate disease diagnostics and therapies."

###

The study, "A common genetic variant within SCN10A modulates cardiac SCN5A expression," was funded by the National Institutes of Health, the European Community's Seventh Framework Programme contract, the Cardiovascular Onderzoek Nederland, the German Foundation for Heart Research and the Federal Ministry of Education and Research. Additional authors include Malou van den Boogaard, Scott Smemo, Ozanna Burnicka-Turek, David E. Arnolds, Harmen J.G. van de Werken, Petra Klous, David McKean, Jochen D. Muehlschlegel, Julia Moosmann, Okan Toka, Xinan H. Yang, Tamara T. Koopmann, Michiel E. Adriaens, Connie R. Bezzina, Wouter de Laat, Christine Seidman, J.G. Seidman, Vincent M. Christoffels and Phil Barnett.

Kevin Jiang | EurekAlert!
Further information:
http://www.uchospitals.edu

Further reports about: Medical SCN10A arrhythmias cardiac function genome-wide levels variant

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>