Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome tree of life is largest yet for seed plants

16.12.2011
New York Plant Genomics Consortium maps evolutionary relationships, gene functions for 150 species

Scientists at the American Museum of Natural History, Cold Spring Harbor Laboratory, The New York Botanical Garden, and New York University have created the largest genome-based tree of life for seed plants to date.


This is a phylogenomic reconstruction of the evolutionary diversification of seed plants. Credit: E.K. Lee et al.

Their findings, published today in the journal PLoS Genetics, plot the evolutionary relationships of 150 different species of plants based on advanced genome-wide analysis of gene structure and function. This new approach, called "functional phylogenomics," allows scientists to reconstruct the pattern of events that led to the vast number of plant species and could help identify genes used to improve seed quality for agriculture.

"Ever since Darwin first described the 'abominable mystery' behind the rapid explosion of flowering plants in the fossil record, evolutionary biologists have been trying to understand the genetic and genomic basis of the astounding diversity of plant species," said Rob DeSalle, a corresponding author on the paper and a curator in the Museum's Division of Invertebrate Zoology who conducts research at the Sackler Institute for Comparative Genomics. "Having the architecture of this plant tree of life allows us to start to decipher some of the interesting aspects of evolutionary innovations that have occurred in this group."

The research, performed by members of the New York Plant Genomics Consortium, was funded by the National Science Foundation (NSF) Plant Genome Program to identify the genes that caused the evolution of seeds, a trait of important economic interest. The group selected 150 representative species from all of the major seed plant groups to include in the study. The species span from the flowering variety—peanuts and dandelions, for example—to non-flowering cone plants like spruce and pine. The sequences of the plants' genomes—all of the biological information needed to build and maintain an organism, encoded in DNA—were either culled from pre-existing databases or generated, in the field and at The New York Botanical Garden in the Bronx, from live specimens.

With new algorithms developed at the Museum and NYU and the processing power of supercomputers at Cold Spring Harbor Laboratory and overseas, the sequences—nearly 23,000 sets of genes (specific sections of DNA that code for certain proteins)—were grouped, ordered, and organized in a tree according to their evolutionary relationships. Algorithms that determine similarities of biological processes were used to identify the genes underlying species diversity.

"Previously, phylogenetic trees were constructed from standard sets of genes and were used to identify the relationships of species," said Gloria Coruzzi, a professor in New York University's Center for Genomics and Systems Biology and the principal investigator of the NSF grant. "In our novel approach, we create the phylogeny based on all the genes in a genome, and then use the phylogeny to identify which genes provide positive support for the divergence of species."

The results support major hypotheses about evolutionary relationships in seed plants. The most interesting finding is that gnetophytes, a group that consists mostly of shrubs and woody vines, are the most primitive living non-flowering seed plants—present since the late Mesozoic era, the "age of dinosaurs." They are situated at the base of the evolutionary tree of seed plants.

"This study resolves the long-standing problem of producing an unequivocal evolutionary tree of the seed plants," said Dennis Stevenson, vice president for laboratory research at The New York Botanical Garden. "We can then use this information to determine when and where important adaptations occur and how they relate to plant diversification. We also can examine the evolution of such features as drought tolerance, disease resistance, or crop yields that sustain human life through improved agriculture."

In addition, the researchers were able to make predictions about genes that caused the evolution of important plant characteristics. One such evolutionary signal is RNA interference, a process that cells use to turn down or silence the activity of specific genes. Based on their new phylogenomic maps, the researchers believe that RNA interference played a large role in the separation of monocots—plants that have a single seed leaf, including orchids, rice, and sugar cane—from other flowering plants. Even more surprising, RNA interference also played a major role in the emergence of flowering plants themselves.

"Genes required for the production of small RNA in seeds were at the very top of the list of genes responsible for the evolution of flowering plants from cone plants," said Rob Martienssen, a professor at Cold Spring Harbor Laboratory. "In collaboration with colleagues from LANGEBIO [Laboratorio Nacional de Genomica para la Biodiversidad] in Mexico last year, we found that these same genes control maternal reproduction, providing remarkable insight into the evolution of reproductive strategy in flowering plants."

The data and software resources generated by the researchers are publicly available and will allow other comparative genomic researchers to exploit plant diversity to identify genes associated with a trait of interest or agronomic value. These studies could have implications for improving the quality of seeds and, in turn, agricultural products ranging from food to clothing.

In addition, the phylogenomic approach used in this study could be applied to other groups of organisms to further explore how species originated, expanded, and diversified.

"The collaboration among the institutions involved here is a great example of how modern science works," said Sergios-Orestis Kolokotronis, a term assistant professor at Columbia University's Barnard College and a research associate at the Museum's Sackler Institute. "Each of the four institutions involved has its own strengths and these strengths were nicely interwoven to produce a novel vision of plant evolution."

Other authors include Ernest Lee, American Museum of Natural History; Angelica Cibrian-Jaramillo, American Museum of Natural History, The New York Botanical Garden, and New York University – currently at the Laboratorio Nacional de Genomica para la Biodiversidad, Mexico; Manpreet Katari, New York University; Alexandros Stamatakis, Technical University Munich – currently at Heidelberg Institute for Theoretical Studies; Michael Ott, Technical University Munich; Joanna Chiu, University of California, Davis; Damon Little, The New York Botanical Garden; and W. Richard McCombie, Cold Spring Harbor Laboratory.

Kendra Snyder | EurekAlert!
Further information:
http://www.amnh.org

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>