Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome sequencing of 3 parasitoid wasp species

18.02.2010
An international consortium of scientists, including Universitat Autònoma de Barcelona (UAB) researcher Deodoro Oliveira, have sequenced the genome of three species of parasitoid wasps of the genus Nasonia. The research offers new basic information on the genetic mechanisms of evolution.

It is also of great importance for the control of agricultural pests and of insect-borne diseases, since parasitoid wasps bite and lay eggs on much larger insects, many of which are the ones to later cause plagues or spread infectious diseases. The research could pave the way for new methods of controlling these plagues and preventing the propagation of diseases.

Parasitoid wasps are four times smaller than the common fruit fly. They lay eggs within other insects and kill their host before leaving. Although their size is insignificant, their importance in the control of populations of agricultural pests is crucial. Thanks to these insects billions of euros worth of crops are saved each year. Not only that, but the genus Nasonia is very useful for research carried out in genetics, given that the males evolve from non-fertilised eggs and only have one set of chromosomes, and it is therefore immediately possible to detect the effects of chromosomes which have undergone mutations. In experiments in which mutations take place, the altered genes are easily detected because there is no copy of the gene which could mask the effects.

The research, recently published in the journal Science, shows the full genome sequencing of the species Nasonia vitripennis, Nasonia giraulti and Nasonia longicornis. It also points out key discoveries made with these sequencings, such as the identification of the genes responsible for the venom produced by wasps. Scientists have identified 79 different proteins in this venom, 23 of which had never been observed before. This information could be very useful in the development of new drugs, since these proteins have important physiological effects on the cells of their hosts. With the complete sequencing of these genomes, research also can identify the genes that determine which specific insects will be attacked by the parasitoid wasp, as well as the specific food needs of its offspring at large scale.

The genome sequencing has led to important discoveries. A set of nuclear and mitochondrial genes have been discovered which evolve much more rapidly than usual, and which could accelerate the process of formation of new species. Researchers also observed bacterial and virus genes included in the genome of wasps. These findings have helped to better understand the genetic mechanisms regulating the evolution of living beings.

Dr Deodoro Oliveira is postdoctoral researcher and lecturer in Genetics at the UAB Department of Genetics and Microbiology. His research focuses on the distribution and evolution of the transposable element Galileo in the genus Drosophila. The follow-up to his research consists in molecular approximation aimed at the study of evolutionary problems. He has worked on Nasonia genetics and genomes and on the intracellular bacteria Wolbachia at the laboratory of Dr John Werren at University of Rochester, New York. Prior to that Dr Oliveira worked on the study of evolutionary relations of the genus Drosophila at the American Museum of Natural History of New York.

Deodoro Oliveira | EurekAlert!
Further information:
http://www.uab.cat

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>