Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome researchers at Bielefeld University decode the hamster genome

22.08.2013
Scientists present their findings in ‘Nature Biotechnology‘

Genome researchers from Bielefeld University’s Center for Biotechnology (CeBiTec) headed by Professor Dr. Alfred Pühler have succeeded in sequencing the genome of the Chinese hamster.


The genome sequencing started with the Chinese hamster (picture). Photo: Bielefeld University. Photo: Kerstin Molthagen

The Chinese hamster supplies the cell cultures used by the pharmaceutical industry to produce biopharmaceutical products such as antibodies used in medicine. This costly project was only possible thanks to a cooperation between Bielefeld University and its international project partners. The researchers have now published their results in the internationally renowned scientific journal ‘Nature Biotechnology‘.

To carry out this project, the CeBiTec research team cooperated with the University of Natural Resources and Life Sciences in Vienna (where the project was headed by Professor Dr. Nicole Borth), the Austrian Centre of Industrial Biotechnology (acib), and two pharmaceutical companies: Novartis (in Switzerland) and Pfizer (in the USA).

Professor Dr. Thomas Noll, Scientific Director of CeBiTec, is confident that the data they have obtained will be of great interest to science and industry. ‘In future, the decoded hamster genome will greatly advance the use of cell lines to produce pharmaceuticals’, says Noll, who runs the Cell Culture Technology research group at the Faculty of Technology and participated in the research project.

The genome of the Chinese hamster is composed of eleven pairs of chromosomes. Decoding such a large genome calls for the generation of large datasets that then have to be processed with bioinformatics. To facilitate the resulting data analysis, the researchers in Bielefeld and their colleagues in this project applied a completely new procedure that sorts the single chromosomes of the genome. The sequencing of the hamster chromosomes was performed by Dr. Karina Brinkrolf at CeBiTec. More than 1.4 billion short DNA sequences were generated with the help of modern instruments for next-generation sequencing. ‘The major challenge in this project was subsequently piecing these short DNA sequences together to form single total sequences of chromosomes’, explains the head of the project Professor Alfred Pühler. This work can only be done with powerful computers. ‘We had to complete the new CeBiTec computer cluster and apply new software before we could determine the genome sequence’, says the bioinformatics expert Dr. Alexander Goesmann who also worked on the project. ‘By decoding the hamster genome sequence’, notes Goesmann, ‘bioinformatics at Bielefeld University has broken new ground.’ With approximately 2.3 billion bases, the magnitude of the genome sequence of the Chinese hamster is comparable to that of the human genome.

The head of the project Alfred Pühler views this research as a milestone in the work at CeBiTec: ‘The decoding of the hamster genome successfully concludes a major CeBiTec project. The hamster sequence is available in the public domain and can be used for research throughout the world.’ The project greatly enhances the status of Bielefeld as a basis for current research on the cell cultures of the Chinese hamster, says Pühler. A further project has already been agreed with the University of Natural Resources and Life Sciences in Vienna and the Austrian Center of Industrial Biotechnology. ‘This places Bielefeld University in a good position to carry on contributing to this highly competitive field of research.’

Original publication:
Karina Brinkrolf, Oliver Rupp, Holger Laux, Florian Kollin, Wolfgang Ernst, Burkhard Linke, Rudolf Kofler, Sandrine Romand, Friedemann Hesse, Wolfgang E. Budach, Sybille Galosy, Dethardt Müller, Thomas Noll, Johannes Wienberg, Thomas Jostock, Mark Leonard, Johannes Grillari, Andreas Tauch, Alexander Goesmann, Bernhard Helk, John E. Mott, Alfred Pühler, and Nicole Borth: Chinese hamster genome sequenced from sorted chromosomes, Nature Biotechnology, http://dx.doi.org/10.1038/nbt.2645, published online on 8 August 2013
For further information in the Internet, go to:
www.cebitec.uni-bielefeld.de

Dr. Alfred Pühler | EurekAlert!
Further information:
http://www.cebitec.uni-bielefeld.de
http://www.uni-bielefeld.de

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>