Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome researchers at Bielefeld University decode the hamster genome

22.08.2013
Scientists present their findings in ‘Nature Biotechnology‘

Genome researchers from Bielefeld University’s Center for Biotechnology (CeBiTec) headed by Professor Dr. Alfred Pühler have succeeded in sequencing the genome of the Chinese hamster.


The genome sequencing started with the Chinese hamster (picture). Photo: Bielefeld University. Photo: Kerstin Molthagen

The Chinese hamster supplies the cell cultures used by the pharmaceutical industry to produce biopharmaceutical products such as antibodies used in medicine. This costly project was only possible thanks to a cooperation between Bielefeld University and its international project partners. The researchers have now published their results in the internationally renowned scientific journal ‘Nature Biotechnology‘.

To carry out this project, the CeBiTec research team cooperated with the University of Natural Resources and Life Sciences in Vienna (where the project was headed by Professor Dr. Nicole Borth), the Austrian Centre of Industrial Biotechnology (acib), and two pharmaceutical companies: Novartis (in Switzerland) and Pfizer (in the USA).

Professor Dr. Thomas Noll, Scientific Director of CeBiTec, is confident that the data they have obtained will be of great interest to science and industry. ‘In future, the decoded hamster genome will greatly advance the use of cell lines to produce pharmaceuticals’, says Noll, who runs the Cell Culture Technology research group at the Faculty of Technology and participated in the research project.

The genome of the Chinese hamster is composed of eleven pairs of chromosomes. Decoding such a large genome calls for the generation of large datasets that then have to be processed with bioinformatics. To facilitate the resulting data analysis, the researchers in Bielefeld and their colleagues in this project applied a completely new procedure that sorts the single chromosomes of the genome. The sequencing of the hamster chromosomes was performed by Dr. Karina Brinkrolf at CeBiTec. More than 1.4 billion short DNA sequences were generated with the help of modern instruments for next-generation sequencing. ‘The major challenge in this project was subsequently piecing these short DNA sequences together to form single total sequences of chromosomes’, explains the head of the project Professor Alfred Pühler. This work can only be done with powerful computers. ‘We had to complete the new CeBiTec computer cluster and apply new software before we could determine the genome sequence’, says the bioinformatics expert Dr. Alexander Goesmann who also worked on the project. ‘By decoding the hamster genome sequence’, notes Goesmann, ‘bioinformatics at Bielefeld University has broken new ground.’ With approximately 2.3 billion bases, the magnitude of the genome sequence of the Chinese hamster is comparable to that of the human genome.

The head of the project Alfred Pühler views this research as a milestone in the work at CeBiTec: ‘The decoding of the hamster genome successfully concludes a major CeBiTec project. The hamster sequence is available in the public domain and can be used for research throughout the world.’ The project greatly enhances the status of Bielefeld as a basis for current research on the cell cultures of the Chinese hamster, says Pühler. A further project has already been agreed with the University of Natural Resources and Life Sciences in Vienna and the Austrian Center of Industrial Biotechnology. ‘This places Bielefeld University in a good position to carry on contributing to this highly competitive field of research.’

Original publication:
Karina Brinkrolf, Oliver Rupp, Holger Laux, Florian Kollin, Wolfgang Ernst, Burkhard Linke, Rudolf Kofler, Sandrine Romand, Friedemann Hesse, Wolfgang E. Budach, Sybille Galosy, Dethardt Müller, Thomas Noll, Johannes Wienberg, Thomas Jostock, Mark Leonard, Johannes Grillari, Andreas Tauch, Alexander Goesmann, Bernhard Helk, John E. Mott, Alfred Pühler, and Nicole Borth: Chinese hamster genome sequenced from sorted chromosomes, Nature Biotechnology, http://dx.doi.org/10.1038/nbt.2645, published online on 8 August 2013
For further information in the Internet, go to:
www.cebitec.uni-bielefeld.de

Dr. Alfred Pühler | EurekAlert!
Further information:
http://www.cebitec.uni-bielefeld.de
http://www.uni-bielefeld.de

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>