Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome researchers at Bielefeld University decode the hamster genome

22.08.2013
Scientists present their findings in ‘Nature Biotechnology‘

Genome researchers from Bielefeld University’s Center for Biotechnology (CeBiTec) headed by Professor Dr. Alfred Pühler have succeeded in sequencing the genome of the Chinese hamster.


The genome sequencing started with the Chinese hamster (picture). Photo: Bielefeld University. Photo: Kerstin Molthagen

The Chinese hamster supplies the cell cultures used by the pharmaceutical industry to produce biopharmaceutical products such as antibodies used in medicine. This costly project was only possible thanks to a cooperation between Bielefeld University and its international project partners. The researchers have now published their results in the internationally renowned scientific journal ‘Nature Biotechnology‘.

To carry out this project, the CeBiTec research team cooperated with the University of Natural Resources and Life Sciences in Vienna (where the project was headed by Professor Dr. Nicole Borth), the Austrian Centre of Industrial Biotechnology (acib), and two pharmaceutical companies: Novartis (in Switzerland) and Pfizer (in the USA).

Professor Dr. Thomas Noll, Scientific Director of CeBiTec, is confident that the data they have obtained will be of great interest to science and industry. ‘In future, the decoded hamster genome will greatly advance the use of cell lines to produce pharmaceuticals’, says Noll, who runs the Cell Culture Technology research group at the Faculty of Technology and participated in the research project.

The genome of the Chinese hamster is composed of eleven pairs of chromosomes. Decoding such a large genome calls for the generation of large datasets that then have to be processed with bioinformatics. To facilitate the resulting data analysis, the researchers in Bielefeld and their colleagues in this project applied a completely new procedure that sorts the single chromosomes of the genome. The sequencing of the hamster chromosomes was performed by Dr. Karina Brinkrolf at CeBiTec. More than 1.4 billion short DNA sequences were generated with the help of modern instruments for next-generation sequencing. ‘The major challenge in this project was subsequently piecing these short DNA sequences together to form single total sequences of chromosomes’, explains the head of the project Professor Alfred Pühler. This work can only be done with powerful computers. ‘We had to complete the new CeBiTec computer cluster and apply new software before we could determine the genome sequence’, says the bioinformatics expert Dr. Alexander Goesmann who also worked on the project. ‘By decoding the hamster genome sequence’, notes Goesmann, ‘bioinformatics at Bielefeld University has broken new ground.’ With approximately 2.3 billion bases, the magnitude of the genome sequence of the Chinese hamster is comparable to that of the human genome.

The head of the project Alfred Pühler views this research as a milestone in the work at CeBiTec: ‘The decoding of the hamster genome successfully concludes a major CeBiTec project. The hamster sequence is available in the public domain and can be used for research throughout the world.’ The project greatly enhances the status of Bielefeld as a basis for current research on the cell cultures of the Chinese hamster, says Pühler. A further project has already been agreed with the University of Natural Resources and Life Sciences in Vienna and the Austrian Center of Industrial Biotechnology. ‘This places Bielefeld University in a good position to carry on contributing to this highly competitive field of research.’

Original publication:
Karina Brinkrolf, Oliver Rupp, Holger Laux, Florian Kollin, Wolfgang Ernst, Burkhard Linke, Rudolf Kofler, Sandrine Romand, Friedemann Hesse, Wolfgang E. Budach, Sybille Galosy, Dethardt Müller, Thomas Noll, Johannes Wienberg, Thomas Jostock, Mark Leonard, Johannes Grillari, Andreas Tauch, Alexander Goesmann, Bernhard Helk, John E. Mott, Alfred Pühler, and Nicole Borth: Chinese hamster genome sequenced from sorted chromosomes, Nature Biotechnology, http://dx.doi.org/10.1038/nbt.2645, published online on 8 August 2013
For further information in the Internet, go to:
www.cebitec.uni-bielefeld.de

Dr. Alfred Pühler | EurekAlert!
Further information:
http://www.cebitec.uni-bielefeld.de
http://www.uni-bielefeld.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>