Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome of parasitic wasps released

15.01.2010
Zoologists at Jena University involved in decoding "Nasonia" genome

When fully grown they have a diminutive size of only 1-2 mm: the "Nasonia" wasps. But great hopes are drawn from them. Nasonia are parasitic insects infesting fly pupae. By doing so, they are naturally eliminating important agricultural pests.

In order to provide constant supply of food for its offspring, the wasp must prevent the early death of the host flies - not less then 40-50 eggs are laid into each pupa. As biological pest control Nasonia is not yet perfect. But this could be changed in the future by using genetic engineering since the whole genome of Nasonia has been decoded by an international team of researchers supported by zoologists from Jena University. Their findings will be published in this Friday's issue of the well renowned journal "Science" (15/01/2010). "We now have the fully elaborated genome of Nasonia at our disposal," says Dr. Reinhard Predel from the Friedrich-Schiller-University Jena, pleased about it.

Nasonia has long been known for its useful way of life. The wasp also became interesting for sciencists because its cells tend to contain their own 'parasitoid' "Wolbachia" bacteria. The international team of researchers - lead by the US-American Prof. Dr. John H. Werren - has detected that these bacteria perform a strong lateral gene transfer with their host cells. That is why bacteria genes can also be found in the wasp genome, which made the analysis of the genome "quite difficult," as Reinhard Predel can confirm. Finally the complete elimination of the bacteria by antibiotics confirmed the existence of an extensive transfer of genes.

The Jena zoologist and his colleague, Dr. Susanne Neupert, were not involved in the decoding process itself. After having been invited to the international team for preparing the ground very well, their contribution was the verification of the geneticists assumptions. If, for instance, the geneticists gave a prediction that a certain gene was responsible for the production of hormones, the neuropeptide experts in Jena faced the difficult experimental task to prove or to reject these assumptions.

"We take a look inside the animals to see if the predicted end products exist," Predel simplifies a long-drawn-out process which needs not only scientific expertise but also craftsmanship. "The concentration of hormones and transmitters is very low in this animal," explains Susanne Neupert. In order to carry out mass-spectrometric investigations, the Jena scientists had to take hormone-producing cell groups from the tiny wasp's brain - a preparation between heartbeats since "the miniaturization is extreme", Predel confirms. In spite of frustrating moments - "we did not really like this insect," admits Predel - they were successful within a years time. Excellent mass spectra could be produced. Due to the Jena analyses, numerous neuropeptides could be identified and possible functions in behaviourial control could be postulated.

"With this work, the genomes of the first parasitoid insects were classified," Reinhard Predel says happily about this pioneering performance. Nasonia belongs to the more than 100.000 parasitoid wasp species that could potentially be useful for humankind. In order to genetically optimize the useful tiny insect and to better understand the biology of Nasonia, "we have to sequence a few more related species," Predel points out to future tasks. They will focus on the detection of genes which are particularly important for the parasitic way of life. The start has been made - as the current issue of "Science" as well as the detailed accompanying publications show.

Original publication:
"Functional and Evolutionary Insights from the Genomes of Three Parasitoid Nasonia Species", Science, 15.1.2010
Contact:
PD Dr. Reinhard Predel
Institute of General Zoology and Animal Physiology
Friedrich-Schiller University Jena
Neugasse 23
07743 Jena
Tel.: +49 / 3641 / 949191
Email: reinhard.predel[at]uni-jena.de

Axel Burchardt | idw
Further information:
http://www.uni-jena.de/en/start_en.html

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>