Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome of Marine Organism Reveals Hidden Secrets

10.05.2011
Research paves the way for new methods to identify promising species in the wild

An international team of researchers led by scientists at Scripps Institution of Oceanography at UC San Diego has deciphered the genome of a tropical marine organism known to produce substances potentially useful against human diseases.

Tiny photosynthetic microorganisms called cyanobacteria are some of the oldest forms of life on the planet. At times their emergence as toxic blooms causes a threat to humans and animals. But despite the recognized capability of marine strains of the cyanobacterial genus Lyngbya, and specifically the species L. majuscula, to create hundreds of natural products with biomedical promise, surprisingly little is known about the genetics underlying their production.

In this week's online early edition of the Proceedings of the National Academy of Sciences, a research team led by Scripps graduate student Adam Jones and postdoctoral fellow Emily Monroe, both in the Gerwick laboratory at Scripps Institution of Oceanography's Center for Marine Biotechnology and Biomedicine (CMBB), provide the first insights of the genome of Lyngbya majuscula 3L, a Caribbean organism that generates compounds that are being developed for potential treatment against cancer and neurodegenerative diseases.

Adam Jones collects samples in Papua New Guinea.
"These compounds have gained considerable attention due to their pharmaceutical and biotechnology potential, but they are also notorious for their environmental toxicity and threats to humans, wildlife and livestock," the authors note in their paper.

In the marine environment the wiry, or "filamentous," cyanobacteria play a vital role in the global carbon cycle. Lyngbya strains are known to disrupt the healthy growth of coral reefs and are behind the agents responsible for a skin rash known as "swimmer's itch."

Achieving the first genomic sequencing of its kind for the filamentous Lyngbya majuscula 3L, the research team overcame several obstacles due to the organism's complex, intermeshed growth in the wild with a range of other bacteria, muddying a clear picture of the genome. The team undertook several different research tactics and experiments, including single cell genome amplification, protein and metabolite profiling.

The results revealed a complex gene network suggesting an enhanced ability of the organism to adapt to shifting conditions in the marine environment.

Sequencing was done at the Max Planck Institute in Berlin, Germany and at the J.Craig Venter Institute in Rockville, Maryland. Much of the assembly was conducted by Sheila Podell, a project scientist in the Eric Allen laboratory at Scripps. Jones and Monroe traced the genomic pathways and performed tests to understand which genes encoded the production of different natural products.

Yet as much as the genome revealed about Lyngbya majuscula 3L, the researchers also uncovered key information about its limitations and shortcomings. For example, it's been assumed that Lyngbya majuscula 3L and its cousins in the Lyngbya genus convert, or "fix," nitrogen from the atmosphere into organic molecules, a fundamental natural process in the global environment. To their surprise, Lyngbya majuscula 3L lacks the genes necessary for nitrogen fixation, even though reports exist that this species fixes nitrogen.

"It's possible that strains of L. majuscula reported to fix nitrogen may have been misidentified because it is visually very similar to other filamentous cyanobacteria species and we found that this marine strain doesn't seem capable of fixing nitrogen on its own," said Monroe. "This feature could be a distinction between the freshwater and the marine strains of what is currently characterized as Lyngbya."'

Coauthors of the paper include (from left) William Gerwick, Emily Monroe, Adam Jones, Lena Gerwick, Sheila Podell and Eduardo Esquenazi.

And while marine Lyngbya strains are proven prolific generators of natural products with biomedical and pharmaceutical potential, the new study shows that more work is needed to pinpoint which species generates which natural products. Jones says that more than 250 compounds are attributed to marine Lyngbya strains. Of those, nearly three-quarters are linked to Lyngbya majuscula. However, the Lyngbya majuscula 3L strain was found to only produce a small number of natural products.

"This particular strain doesn't produce nearly as many (natural products) as we thought it might, which shows that many of the interesting molecules discovered to date are probably scattered among multiple organisms," said Jones. "The lesson learned is that not all marine Lyngbya strains are created equal."

"This may change the way we start looking at things in the field and give us new ways to identify organisms," said Lena Gerwick, the faculty member who organized this genomic project from the beginning. "We might be able to turn things around and use the compounds they make as a new way of determining what kinds of species they are."

The Network of Excellence in Marine Genomics Europe, the U.S. National Institutes of Health and California Sea Grant supported the research.

In addition to Jones, Monroe and L. Gerwick, coauthors of the paper include Sheila Podell, Eduardo Esquenazi, Eric Allen and William Gerwick of Scripps Institution of Oceanography; Wolfgang Hess of the University of Freiburg, Germany; Sven Klages and Michael Kube of the Max Planck Institute for Molecular Genetics, Germany; Sherry Niessen, Heather Hoover and John Yates III of The Scripps Research Institute; Michael Rothmann and Michael Burkart of the UCSD Department of Chemistry and Biochemistry; Roger Lasken of the J. Craig Venter Institute; Pieter Dorrestein of the UCSD Department of Chemistry and Biochemistry and Skaggs School of Pharmacy and Pharmaceutical Sciences and Richard Reinhardt of the Genome Centre Cologne at MPI for Plant Breeding Research, Germany.

Note to broadcast and cable producers: University of California, San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

About Scripps Institution of Oceanography
Scripps Institution of Oceanography at University of California, San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,400, and annual expenditures of approximately $170 million from federal, state and private sources. Scripps operates robotic networks, and one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 415,000 visitors each year. Learn more at scripps.ucsd.edu.

About UC San Diego
Fifty years ago, the founders of the University of California, San Diego, had one criterion for the campus: It must be distinctive. Since then, UC San Diego has achieved the extraordinary in education, research and innovation. Sixteen Nobel laureates have taught on campus; stellar faculty members have been awarded Fields Medals, Pulitzer Prizes, McArthur Fellowships and many other honors. UC San Diego-recognized as one of the top ten public universities by U.S. News & World Report and named by the Washington Monthly as number one in the nation in rankings measuring "what colleges are doing for the country"- is widely acknowledged for its local impact, national influence and global reach. UC San Diego is celebrating 50 years of visionaries, innovators and overachievers.
Contacts
Mario Aguilera or Robert Monroe
Phone: 858.534.3624
scrippsnews@ucsd.edu

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>