Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome hints at markers for higher-producing, better-tasting chocolate

03.06.2013
The freshly sequenced genome of the most commonly cultivated cacao plant in the world is revealed in the open access journal Genome Biology this week.

Researchers have utilised high quality DNA sequences to demonstrate the usefulness and quality of the sequence to identify genetic markers that can lead to higher yielding cocoa plants that still produce better tasting cocoa.

There are many varieties of the cacao tree (Theobroma cacao L.), but the green podded Costa Rican Matina or Amelonado variety is the most popular because of its high yield and pleasant flavor. In Ecuador, a red podded high yielding variety, CCN 51, is blended with a green podded, better tasting but lower yielding variety. But the adulteration reduces the overall quality of the chocolate, so cacao growers are keen to improve the quality of cacao beans exported from Ecuador.

Juan C Motamayor from Mars Incorporated, and colleagues sequenced the genome of the Matina cacao variety, then used genetic analyses and comparisons with other varieties, to highlight a gene involved in pod colour variation. Zooming further in on the gene sequence, they then identified a single DNA letter change that affected levels of the gene's expression, and so the colour of the pod.

Cacao plant breeders trying to produce a delicious high-yield strain through cross breeding have met with limited success. So the genetic marker could, in theory, be used to screen young seedlings, and highlight desirable plants long before they reach maturity. This would avoid the expense and labour of growing up potential duds, ultimately improving the quality of cacao plants and the chocolate made from them.

Although the genome sequence of the Criollo cacao variety was reported two years ago, it's genetically quite distinct and so a poor representative of the cacao types cultivated worldwide.

Since the publication of the genome sequence, researchers have been working to identify genetic markers that can produce more productive cocoa plants for farmers while still providing consumers with high quality and superior taste. The genome sequence research is a part of an overall effort to use traditional breeding techniques to develop planting materials that farmers can use to be more productive.

Cacao trees are grown throughout the humid tropics in more than 50 countries, and cacao beans, harvested from the plants' pods, are used to produce chocolate as well as in the confectionary and cosmetic industries. Cacao production is essential to the livelihoods of around 45 million people worldwide, and to the happiness and well-being of millions and millions more.

Media Contact

Ruth Francis
Head of Communication, BioMed Central
Tel: +44 20 3192 2737
Mobile: +44 7825 287 546
E-mail: ruth.francis@biomedcentral.com
Notes to Editors
1. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color

Juan C Motamayor, Keithanne Mockaitis, Jeremy Schmutz, Niina Haiminen, Donald Livingstone III, Omar Cornejo, Seth Findley, Ping Zheng, Filippo Utro, Stefan Royaert, Christopher Saski, Jerry Jenkins, Ram Podicheti, Meixia Zhao, Brian Scheffler, Joseph C Stack, Alex Feltus, Guiliana Mustiga, Freddy Amores, Wilbert Phillips, Jean Philippe Marelli, Gregory D May, Howard Shapiro, Jianxin Ma, Carlos D Bustamante, Raymond J Schnell, Dorrie Main, Don Gilbert, Laxmi Parida and David N Kuhn

Genome Biology 2013, 14:R53, doi:10.1186/gb-2013-14-6-r53
Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

The author is currently travelling and can only provide limited contact. For further enquires please contact BioMed Central's press team on the details given above.

2. Genome Biology serves the biological research community as an international forum for the dissemination, discussion and critical review of information about all areas of biology informed by genomic research. Key objectives are to provide a guide to the rapidly developing resources and technology in genomics and its impact on biological research, to publish large datasets and extensive results that are not readily accommodated in traditional journals, and to help establish new standards and nomenclature for post-genomic biology. @GenomeBiology

3. BioMed Central is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector. @BioMedCentral

4. In 2010, in conjunction with the US Department of Agriculture - Agriculture Research Service, Indiana University, Hudson-Alpha Institute and IBM, Mars Chocolate mapped the cocoa genome, which is available to all cocoa researchers at http://www.cacaogenomedb.org/

Ruth Francis | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>