Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Genome Guardian’s Dimmer Switch: Regulating p53 Is a Matter of Life Or Death

Salk Institute scientists show how regulation of a key damage response protein can make the difference between survival and death after radiation

Scientists at the Salk Institute for Biological Studies have found clues to the functioning of an important damage response protein in cells. The protein, p53, can cause cells to stop dividing or even to commit suicide when they show signs of DNA damage, and it is responsible for much of the tissue destruction that follows exposure to ionizing radiation or DNA-damaging drugs such as the ones commonly used for cancer therapy. The new finding shows that a short segment on p53 is needed to fine-tune the protein’s activity in blood-forming stem cells and their progeny after they incur DNA damage.

“It’s like a dimmer switch, or rheostat, that helps control the level of p53 activity in a critical stem cell population and the offspring they generate,” says Geoffrey M. Wahl, professor in the Salk Institute’s Gene Expression Laboratory, and senior author of the study, which appears online in the journal Genes & Development on July 1, 2011. “In principle, controlling this switch with drugs could reduce the unwanted effects from DNA-damaging chemotherapy or radiation treatment, allowing higher doses to be used.”

The protein p53 is an important tumor suppressor because it can destroy or halt the growth of cells that develop potential cancer-causing DNA mutations. But as Wahl’s lab and others have shown over the past several years, p53 has much broader importance in the life and death of cells. “It’s critical for determining whether a cell survives stress and continues to function in a variety of situations,” says Wahl.

One problem with p53 is that it apparently evolved to protect the integrity of the genome for future generations, rather than to prolong the lives of individual cells or animals. From the point of view of an animal, p53 sometimes goes too far in killing cells or suppressing growth. Experiments in mice have suggested that even modest reductions in p53’s activity greatly increases survival after exposure to radiation, without raising the long-term cancer risk to unacceptable levels.

Scientists therefore are eager to find out how cells naturally regulate p53, so that they can target these mechanisms with drugs. One clue uncovered by recent studies is that regulatory molecules can alter p53 activity by chemically modifying some key amino acids. In the current study, Wahl and colleagues set out to illuminate the function of a stretch of regulatory amino acids at one end of the protein by creating “designer” mice with other amino acids in this region, thereby rendering it inoperative.

The mutant mice had somewhat higher p53 activity than normal mice, at least in some tissues. Based on other studies, Wahl’s team expected the mutants to age faster. To their surprise, however, the mutant mice lived about as long as ordinary, “wild type” mice. A second surprise came when Wahl’s team exposed the mice to ionizing radiation, of the sort that nuclear power plants may emit. While all the normal mice survived, half the mutant mice died within four weeks.

To understand why the mutant mice died so readily, Vivian Wang, a postdoc in Wahl’s lab, collaborated with the Salk veterinarian, Mat Leblanc, and hematologists at UCSD and noted that the irradiated mutant mouse hearts became enlarged and pale, as if they had been starved of oxygen. “Eventually, we found the reason for this,” Wahl explains. “We found that irradiation and the ensuing p53 response significantly damaged the blood-forming cells of their bone marrow, but other parts of their bodies seemed quite normal. We followed up these studies with stem cell transplantation experiments to show the mutant p53 really affected the stem cells and their descendents that make the blood.”

These results led the team to conclude that the loss of function of p53’s normal “dimmer-switch” segment had allowed the protein to become too active in the hematopoietic stem cells of the mutant mice, arresting the stem cells’ proliferation and preventing them from replacing the blood cells lost to irradiation. “If the stem cells and their descendants are arrested for too long, they can’t recover fast enough, and the mice eventually die of the effects of insufficient oxygenation of critical tissues,” Wahl says.

The team then studied how p53 activation could cause these cells to arrest for too long. Using sophisticated new techniques, they found that p53 lacking its “dimmer switch” turned on too much of a gene called p21, which acts as a brake to halt cells from dividing. “To confirm the significance of that finding, we created mice that expressed the mutant p53, but had only one instead of the normal two copies of p21,” Wahl says. “This reduced p21 levels after irradiation. Remarkably, this was enough to significantly reduce the mortality of the ‘dimmerless’ p53 mice. They were much less sensitive to radiation when they just had one less copy of p21.”

The study underscores the importance of an evolutionarily conserved regulatory segment of p53 and the importance of p53 activity in the response to conditions that produce DNA damage. “Our study indicates that the amount of damaged DNA caused by radiation or toxins, isn’t the sole determinant of life or death,” says Wahl. “The extent to which p53 is also very important.”

One implication of this research is that drugs to lower p53 levels, or to reduce its transcription of other growth-stopping genes such as p21, might be used temporarily to reduce unwanted tissue damage from DNA-altering drugs or radiation. Another implication is that p53-boosting drugs, which are currently being tested in cancer patients, could have dangerous side effects if used in combination with other drugs that cause DNA damage. “Our mouse model suggests that if you use a p53-activating agent, the last thing you should do is combine it with a general DNA-damaging chemotherapy or radiotherapy,” Wahl says.

The lead author of the study was Yunyuan (“Vivian”) Wang, PhD, at the time a postdoctoral researcher in Wahl’s lab, and now a project scientist at the University of California, Irvine. The other coauthors were Mathias Leblanc, Kurt Krummel and Danielle Engle, of the Salk Institute’s Gene Expression Laboratory; Norma Fox and Kenneth Kaushansky, MD, of the University of California, San Diego; Jian-Hua Mao and Allan Balmain of the Helen Diller Family Comprehensive Cancer Center, at the University of California, San Francisco; and Kelsey L. Tinkum, David Piwnica-Worms and Helen Piwnica-Worms of the Mallinckrodt Institute of Radiology at Washington University Medical School in St. Louis. Funding provided by the National Cancer Institute.

About the National Cancer Institute (NCI): as part of the National Institutes of Health (NIH), one of 11 agencies that compose the Department of Health and Human Services (HHS), the NCI, established under the National Cancer Institute Act of 1937, is the Federal Government's principal agency for cancer research and training. The National Cancer Act of 1971 broadened the scope and responsibilities of the NCI and created the National Cancer Program. Over the years, legislative amendments have maintained the NCI authorities and responsibilities and added new information dissemination mandates as well as a requirement to assess the incorporation of state-of-the-art cancer treatments into clinical practice. NCI coordinates the National Cancer Program, which conducts and supports research, training, health information dissemination, and other programs with respect to the cause, diagnosis, prevention, and treatment of cancer, rehabilitation from cancer, and the continuing care of cancer patients and the families of cancer patients.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Andy Hoang | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>