Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome duplication encourages rapid adaptation of plants

04.05.2011
Plants adapt to the local weather and soil conditions in which they grow, and these environmental adaptations are known to evolve over thousands of years as mutations slowly accumulate in plants' genetic code.

But a University of Rochester biologist has found that at least some plant adaptations can occur almost instantaneously, not by a change in DNA sequence, but simply by duplication of existing genetic material.

Justin Ramsey's findings are published in the current Proceedings of the National Academy of Sciences.

While nearly all animals have two sets of chromosomes—one set inherited from the maternal parent and the other inherited from the paternal parent—many plants are polyploids, meaning they have four or more chromosome sets. "Some botanists have wondered if polyploids have novel features that allow them to survive environmental change or colonize new habitats," says Assistant Professor Justin Ramsey. "But this idea had not been rigorously tested."

Plant breeders have previously induced polyploidy in crop plants, like corn and tomato, and evaluated its consequences in greenhouses or gardens. Such an experimental approach had never been taken in wild plant species, Ramsey said, so it was unknown how polyploidy affected plant survival and reproduction in nature.

Ramsey decided to perform his own test by studying wild yarrow (Achillea borealis) plants that are common on the coast of California. Yarrow with four chromosome sets (tetraploids) occupy moist, grassland habitats in the northern portion of Ramsey's study area; yarrow with six sets of chromosomes (hexaploids) grow in sandy, dune habitats in the south.

Ramsey transplanted tetraploid yarrow from the north into the southern habitat and discovered that the native hexaploid yarrow had a five-fold survival advantage over the transplanted tetraploid yarrow. This experiment proved that southern plants are intrinsically adapted to dry conditions; however, it was unclear if the change in chromosome number, per se, was responsible. Over time, natural hexaploid populations could have accumulated differences in DNA sequence that improved their performance in the dry habitats where they now reside.

To test that idea, Ramsey took first-generation, mutant hexaploid yarrow that were screened from a tetraploid population, and transplanted them to the sandy habitat in the south. Ramsey compared the performance of the transplanted yarrows and found that the hexaploid mutants had a 70 percent survival advantage over their tetraploid siblings. Because the tetraploid and hexaploid plants had a shared genetic background, the difference of survivorship was directly attributable to the number of chromosome sets rather than the DNA sequences contained on the chromosomes.

Ramsey offers two theories for the greater survivorship of the hexaploid plants. It may be that DNA content alters the size and shape of the cells regulating the opening and closing of small pores on the leaf surface. As a result, the rate at which water passes through yarrow leaves may be reduced by an increase in chromosome set number (ploidy). Another possibility, according to Ramsey, is that the addition of chromosome sets masks the effects of plant deleterious genes, similar to those that cause cystic fibrosis and other genetic diseases in humans.

"Sometimes the mechanism of adaptation isn't a difference in genes," said Ramsey, "it's the number of chromosomes." While scientists previously believed polyploidy played a role in creating gene families—groups of genes with related functions—they were uncertain whether chromosome duplication itself had adaptive value.

Now, Ramsey says scientists "should pay more attention to chromosome number, not only as an evolutionary mechanism, but as a form of genetic variation to preserve rare and endangered plants."

Peter Iglinski | EurekAlert!
Further information:
http://www.rochester.edu

Further reports about: DNA Genom chromosome sets crop plant genetic disease

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>