Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome of the brown bear is now sequenced - scientists hope to learn about adaptations to climate

12.10.2011
A research group led by Prof. Axel Janke at the Biodiversity and Climate

Research Centre (BiK-F) in Frankfurt am Main has just finished sequencing the genome of the brown bear. The work was done in collaboration the Norwegian research institute Bioforsk and the Chinese genome-sequencing institute BGI.


Male Brown Bear
Copyright: Alexander Kopatz, Bioforsk

The researchers will now compare the brown bear sequence to the recently released genome sequences of polar bear and giant panda. The brown bear genome could ultimately be the key to identify genes that are relevant for environmental adaptation.

He is truly a mighty one – the brown bear is, together with the polar bear, the world's largest living land predator. In one of the first German mammalian genome projects, its genetic make-up, the genome, has now been sequenced. The “pilot bear” as he is nicknamed, was a male brown bear from the Pasvik Valley, Northern Norway and its genome is a spark for new research on this species. One of the partners, the Chinese genome center BGI, had also recently released the genome of the polar bear. Prof. Dr. Axel Janke, BiK-F, head of the research team, says: “With the entire genome sequences of those two bears, we have an incredible resource at hand to understand the genetic basis of adaptation to different climates. The genome sequences will also prove an invaluable resource to study other aspects of bear biology, and will help us to better understand and protect those fascinating animals.”

Brown bear genome: essential reference point to understand climate adaptation in polar bear

The particular significance of the brown bear genome springs from the bear’s close relationship to the polar bear – the flagship species of climate change. Recent studies at BiK-F show that the two bears diverged from each other less than a million years ago and the species are much older than previously thought “Thus, comparing their genomes will tell much about how they managed to adapt to different climates”, as Prof. Dr. Axel Janke (BiK-F) points out: “They are a terrific study system to understand what genetic make-up allows a mammal to survive under arctic or temperate climate conditions. Comparative genomics has already taught us a lot about evolutionary processes in humans, Neanderthals and chimpanzees. Now the bears will be the second mammalian group where the whole genomes of very close relatives can be studied and our“pilot bear” will become immortal.”

The brown bear genome is just the starting point for a series of genome research projects on this species, as Janke further explains: “The entire history of the brown bear is written in its genome and it will take years to completely decipher it. Even in humans, with several complete genomes and several millions of other sequences and medical data being available, the genome research has only just begun. However, comparative genomics is immensely profiting from this field.”

The brown bear genome enables advanced migration studies

The brown bear genome will not only be useful to study climate adaption, but also for conservation aspects. “The data will allow the development of new genetic markers that are urgently needed for conservation and wildlife management”, says Dr. Hans-Geir Eiken from Norwegian Bioforsk. The institute closely monitors Scandinavian and Russian bear populations. While a number of studies have looked at maternally inherited mitochondrial DNA to study the population history and migration patterns of females, no relevant markers from the Y-chromosome are available to study male migration. The genome of the male brown bear will now enable such studies. “Many previous mammalian genomes came from females and were thus missing Y-chromosome sequences”, Dr. Eiken points out. He and his colleagues are eager to start the work, once the initial assembly and genome analyses have been completed.

A complete mammalian genome is also a rich resource for countless follow-up studies by evolutionary biologists and geneticists. For instance, mammalian genomes consist to a large part of non-coding sequences, so-called ”jumping genes” (transposable elements). Transposable elements typically account for one third to half of a mammalian genome and have a yet unknown impact on gene function, evolution and adaptation, because until now most studies looked at single loci of genes rather than whole genomes of species that are closely related.

For studying the vast amount of data and complexity of this and other questions, Janke’s BiK-F research team consists of experts in the fields of bioinformatics, population genetics and the genetics of transposable elements. Together with Bioforsk, among others, the data are currently being analyzed and the first results are expected shortly. Next to Janke and Eiken, the research is conducted by Dr. Björn Hallström, Dr. Frank Hailer, Dr. Maria Nilsson, Verena Kutschera and Vikas Kumar from BiK-F as well as Bioforsk scientists Alexander Kopatz, Dr. Oddmund Kleven and Dr. Snorre Hagen.

For further information please contact:

Prof. Dr. Axel Janke
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Phone +49 69 79824774 or +49 69 7542 1842
email: axel.janke@senckenberg.de
and
Dr. Hans Geir Eiken
Norwegian Institute for Agricultural and Environmental Research - Svanhovd
Phone +47 99629966
email: HansGeir.Eiken@bioforsk.no
and
Dr. Snorre B. Hagen
Norwegian Institute for Agricultural and Environmental Research - Svanhovd
Phone +47 93240197
email: snorre.hagen@bioforsk.no
or
Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F), press officer
Phone +49 69 7542 1838
email: sabine.wendler@senckenberg.de
LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main, Germany
With the objective of analysis the complex interactions between biodiversity and climate through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK-F) has been funded since 2008 within the context of the Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt as well as other, directly involved partners, co-operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future and scientific recommendations for sustainable action.

Sabine Wendler | idw
Further information:
http://www.bik-f.de
http://www.senckenberg.de

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>