Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome of blue stain fungus evolved to bypass tree defense in mountain pine beetle epidemic

25.01.2011
The genome of the fungus that helps mountain pine beetles infect and kill lodgepole pines has been decoded in a University of British Columbia study.

Also known as blue stain fungus for the stain it leaves in the wood of infected trees, Grosmannia clavigera is carried to the host trees by pine beetles and weakens the trees’ natural defense system, allowing pine beetles to feed and reproduce in the tree bark. A successful beetle-fungus attack ultimately causes tree death.

Now, researchers from UBC and the BC Cancer Agency’s Genome Sciences Centre have conducted a detailed genome analysis and identified genes in Grosmannia clavigera that are responsible for the fungus’s ability to bypass the lodgepole pine’s natural fungicide – and use it as a carbon source for fungal growth.

The study is published this week in the Proceedings of the National Academy of Sciences.

“We found that the fungus cannot only survive, but thrive when exposed to the normally fungicidal resin chemicals of pines,” says co-author Joerg Bohlmann, a Distinguished University Scholar and professor in the Michael Smith Laboratories at UBC. “In a way, it’s like these genes give the fungus the ability to turn poison into nectar.”

“Our study helps to clarify how the fungus has evolved to successfully infect lodgepole pine and gives us a better understanding of the intricate chemical interaction between the tree, beetle and fungus,” says Bohlmann. “This new knowledge could inform strategies to prevent future outbreaks, such as selecting trees with improved resistance to pine beetles and their associated pathogens.”

The current outbreak of mountain pine beetle has destroyed more than 16 million hectares of forest in B.C. – roughly twice the size of New Brunswick or more than 32 million football fields. It has crossed the Rocky Mountains, and is now in the boreal pine forests, moving east. The devastation of large areas of pine forest is anticipated to have major consequences for global carbon balance and sequestration.

The study was led by Bohlmann, Colette Breuil, a professor in the UBC Department of Wood Science and Scott DiGuistini, a doctoral student in the UBC Faculty of Forestry. It is funded by Genome BC, Genome Alberta, Genome Canada, as well as the Natural Sciences and Engineering Research Council of Canada and the B.C. Ministry of Forests.

Joerg Bohlmann | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>