Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome of blue stain fungus evolved to bypass tree defense in mountain pine beetle epidemic

25.01.2011
The genome of the fungus that helps mountain pine beetles infect and kill lodgepole pines has been decoded in a University of British Columbia study.

Also known as blue stain fungus for the stain it leaves in the wood of infected trees, Grosmannia clavigera is carried to the host trees by pine beetles and weakens the trees’ natural defense system, allowing pine beetles to feed and reproduce in the tree bark. A successful beetle-fungus attack ultimately causes tree death.

Now, researchers from UBC and the BC Cancer Agency’s Genome Sciences Centre have conducted a detailed genome analysis and identified genes in Grosmannia clavigera that are responsible for the fungus’s ability to bypass the lodgepole pine’s natural fungicide – and use it as a carbon source for fungal growth.

The study is published this week in the Proceedings of the National Academy of Sciences.

“We found that the fungus cannot only survive, but thrive when exposed to the normally fungicidal resin chemicals of pines,” says co-author Joerg Bohlmann, a Distinguished University Scholar and professor in the Michael Smith Laboratories at UBC. “In a way, it’s like these genes give the fungus the ability to turn poison into nectar.”

“Our study helps to clarify how the fungus has evolved to successfully infect lodgepole pine and gives us a better understanding of the intricate chemical interaction between the tree, beetle and fungus,” says Bohlmann. “This new knowledge could inform strategies to prevent future outbreaks, such as selecting trees with improved resistance to pine beetles and their associated pathogens.”

The current outbreak of mountain pine beetle has destroyed more than 16 million hectares of forest in B.C. – roughly twice the size of New Brunswick or more than 32 million football fields. It has crossed the Rocky Mountains, and is now in the boreal pine forests, moving east. The devastation of large areas of pine forest is anticipated to have major consequences for global carbon balance and sequestration.

The study was led by Bohlmann, Colette Breuil, a professor in the UBC Department of Wood Science and Scott DiGuistini, a doctoral student in the UBC Faculty of Forestry. It is funded by Genome BC, Genome Alberta, Genome Canada, as well as the Natural Sciences and Engineering Research Council of Canada and the B.C. Ministry of Forests.

Joerg Bohlmann | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>