Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whole genome analysis, stat

20.02.2014
Supercomputer dramatically accelerates rapid genome analysis

Although the time and cost of sequencing an entire human genome has plummeted, analyzing the resulting three billion base pairs of genetic information from a single genome can take many months.


Beagle, a Cray XE6 supercomputer at Argonne National Laboratory, supports computation, simulation and data analysis for the biomedical research community.

Credit: Argonne National Laboratory

In the journal Bioinformatics, however, a University of Chicago-based team—working with Beagle, one of the world's fastest supercomputers devoted to life sciences—reports that genome analysis can be radically accelerated. This computer, based at Argonne National Laboratory, is able to analyze 240 full genomes in about two days.

"This is a resource that can change patient management and, over time, add depth to our understanding of the genetic causes of risk and disease," said study author Elizabeth McNally, MD, PhD, the A. J. Carlson Professor of Medicine and Human Genetics and director of the Cardiovascular Genetics clinic at the University of Chicago Medicine.

"The supercomputer can process many genomes simultaneously rather than one at a time," said first author Megan Puckelwartz, a graduate student in McNally's laboratory. "It converts whole genome sequencing, which has primarily been used as a research tool, into something that is immediately valuable for patient care."

Because the genome is so vast, those involved in clinical genetics have turned to exome sequencing, which focuses on the two percent or less of the genome that codes for proteins. This approach is often useful. An estimated 85 percent of disease-causing mutations are located in coding regions. But the rest, about 15 percent of clinically significant mutations, come from non-coding regions, once referred to as "junk DNA" but now known to serve important functions. If not for the tremendous data-processing challenges of analysis, whole genome sequencing would be the method of choice.

To test the system, McNally's team used raw sequencing data from 61 human genomes and analyzed that data on Beagle. They used publicly available software packages and one quarter of the computer's total capacity. They found that shifting to the supercomputer environment improved accuracy and dramatically accelerated speed.

"Improving analysis through both speed and accuracy reduces the price per genome," McNally said. "With this approach, the price for analyzing an entire genome is less than the cost of the looking at just a fraction of genome. New technology promises to bring the costs of sequencing down to around $1,000 per genome. Our goal is get the cost of analysis down into that range."

"This work vividly demonstrates the benefits of dedicating a powerful supercomputer resource to biomedical research," said co-author Ian Foster, director of the Computation Institute and Arthur Holly Compton Distinguished Service Professor of Computer Science. "The methods developed here will be instrumental in relieving the data analysis bottleneck that researchers face as genetic sequencing grows cheaper and faster."

The finding has immediate medical applications. McNally's Cardiovascular Genetics clinic, for example, relies on rigorous interrogation of the genes from an initial patient as well as multiple family members to understand, treat and prevent disease. More than 50 genes can contribute to cardiomyopathy. Other genes can trigger heart failure, rhythm disorders or vascular problems.

"We start genetic testing with the patient," she said, "but when we find a significant mutation we have to think about testing the whole family to identify individuals at risk."

The range of testable mutations has radically expanded. "In the early days we would test one to three genes," she said. "In 2007, we did our first five-gene panel. Now we order 50 to 70 genes at a time, which usually gets us an answer. At that point, it can be more useful and less expensive to sequence the whole genome."

The information from these genomes combined with careful attention to patient and family histories "adds to our knowledge about these inherited disorders," McNally said. "It can refine the classification of these disorders," she said. "By paying close attention to family members with genes that place then at increased risk, but who do not yet show signs of disease, we can investigate early phases of a disorder. In this setting, each patient is a big-data problem."

Beagle, a Cray XE6 supercomputer housed in the Theory and Computing Sciences (TCS) building at Argonne National Laboratory, supports computation, simulation and data analysis for the biomedical research community. It is available for use by University of Chicago researchers, their collaborators and "other meritorious investigators." It was named after the HMS Beagle, the ship that carried Charles Darwin on his famous scientific voyage in 1831.

The National Institutes of Health and the Doris Duke Charitable Foundation funded this study. Additional authors include Lorenzo Pesce, Viswateja Nelakuditi, Lisa Dellefave-Castillo and Jessica Golbus of the University of Chicago; Sharlene Day of the University of Michigan; Thomas Coppola of the University of Pennsylvania; and Gerald Dorn of Washington University.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>