Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Genius of a Disorderly Enzyme

28.06.2011
USC Dornsife researchers uncover how the inefficiency of activation-induced deoxycytidine deaminase is good for your immune system.

Why is antibody diversity important? Think about it like this, said Myron Goodman: “Why don’t you die when I sneeze? It’s because you have a powerful immune system. And the way to get a decent immune system is for your body to have a way to respond to insults it has never seen before.”

Random patterns of deamination by the enzyme activation-induced deoxycytidine deaminase (AID) are the key to generating antibody diversity, a crucial component to a healthy immune system, according to a new study by USC Dornsife researchers published in The Journal of Biological Chemistry.

Having variation in the types of antibodies produced by your body gives it a fighting chance to respond to those “insults.” Antibodies protect against invasion by antigens such as bacteria or viruses by locating them in the body and neutralizing them. To do that, antibodies must bind to antigens. The more variation in the types of antibodies produced by the body, the more likely they will be able to bind to and fight off antigens, which come in many forms.

To create antibody diversity, mutations must occur in the variable region of immunoglobulin genes, the region where antibodies bind to invaders. Generating those mutations has to be a really random process according to Goodman, professor of biological sciences and chemistry in USC Dornsife. This is where AID steps in.

Goodman and his colleagues monitored the actions of AID as it scanned single-stranded DNA or transcribed double-stranded DNA. The enzyme essentially moves back and forth along the DNA strand and sporadically deaminates, or converts, cytosine to uracil triggering a mutation in tri-nucleotide motifs – sequences comprising three bases – found along the DNA.

Unlike most enzymes that are exquisitely efficient in targeting favored motifs, they found that AID was extremely inefficient. AID initiated chemical reactions in favored motifs only about 3 percent of the time. By mutating the motifs so haphazardly, the researchers suggest that AID produces antibody diversity.

The study also sheds light on a little-studied group of enzymes. Enzymes like AID that scan single-stranded DNA have been studied far less extensively than enzymes that scan double-stranded DNA.

“This is the first really clear picture of what AID is doing during the scanning process,” Goodman said.

To identify and describe AID’s complex process during scanning, the team used a genetic assay to measure the distribution of AID-induced mutations on individual DNA molecules and then analyzed the mutational data computationally using a random walk model, developed for the study by USC Dornsife researcher Peter Calabrese. By combining the genetic and computational analyses, they were able to calculate the distribution of mutations that occurred with a remarkable fit to their experimental data. The fit entailed matching theory to experiment for the patterns of closely spaced mutations and separately for the distances between mutated and non-mutated target motifs.

Their paper, “An Analysis of a Single-stranded DNA Scanning Process in which AID Deaminates C to U Haphazardly and Inefficiently to Ensure Mutational Diversity” published online May 12, was selected by The Journal of Biological Chemistry as a “Paper of the Week” to appear in the July 15 print issue. The distinction is bestowed by the publication’s editorial board members and associate editors to papers that represent the top 1 percent of papers reviewed in terms of significance and overall importance.

Authors on the paper are from USC Dornsife and include Phuong Pham, assistant professor (research) of biological sciences; Calabrese, assistant professor (research) of biological sciences; Goodman, professor of biological sciences and chemistry; and Soo Jung Park, research assistant. The National Institutes of Health funded the study.

Michelle Salzman | EurekAlert!
Further information:
http://www.usc.edu
http://dornsife.usc.edu/news/stories/972/the-genius-of-a-disorderly-enzyme

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>