Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Genius of a Disorderly Enzyme

USC Dornsife researchers uncover how the inefficiency of activation-induced deoxycytidine deaminase is good for your immune system.

Why is antibody diversity important? Think about it like this, said Myron Goodman: “Why don’t you die when I sneeze? It’s because you have a powerful immune system. And the way to get a decent immune system is for your body to have a way to respond to insults it has never seen before.”

Random patterns of deamination by the enzyme activation-induced deoxycytidine deaminase (AID) are the key to generating antibody diversity, a crucial component to a healthy immune system, according to a new study by USC Dornsife researchers published in The Journal of Biological Chemistry.

Having variation in the types of antibodies produced by your body gives it a fighting chance to respond to those “insults.” Antibodies protect against invasion by antigens such as bacteria or viruses by locating them in the body and neutralizing them. To do that, antibodies must bind to antigens. The more variation in the types of antibodies produced by the body, the more likely they will be able to bind to and fight off antigens, which come in many forms.

To create antibody diversity, mutations must occur in the variable region of immunoglobulin genes, the region where antibodies bind to invaders. Generating those mutations has to be a really random process according to Goodman, professor of biological sciences and chemistry in USC Dornsife. This is where AID steps in.

Goodman and his colleagues monitored the actions of AID as it scanned single-stranded DNA or transcribed double-stranded DNA. The enzyme essentially moves back and forth along the DNA strand and sporadically deaminates, or converts, cytosine to uracil triggering a mutation in tri-nucleotide motifs – sequences comprising three bases – found along the DNA.

Unlike most enzymes that are exquisitely efficient in targeting favored motifs, they found that AID was extremely inefficient. AID initiated chemical reactions in favored motifs only about 3 percent of the time. By mutating the motifs so haphazardly, the researchers suggest that AID produces antibody diversity.

The study also sheds light on a little-studied group of enzymes. Enzymes like AID that scan single-stranded DNA have been studied far less extensively than enzymes that scan double-stranded DNA.

“This is the first really clear picture of what AID is doing during the scanning process,” Goodman said.

To identify and describe AID’s complex process during scanning, the team used a genetic assay to measure the distribution of AID-induced mutations on individual DNA molecules and then analyzed the mutational data computationally using a random walk model, developed for the study by USC Dornsife researcher Peter Calabrese. By combining the genetic and computational analyses, they were able to calculate the distribution of mutations that occurred with a remarkable fit to their experimental data. The fit entailed matching theory to experiment for the patterns of closely spaced mutations and separately for the distances between mutated and non-mutated target motifs.

Their paper, “An Analysis of a Single-stranded DNA Scanning Process in which AID Deaminates C to U Haphazardly and Inefficiently to Ensure Mutational Diversity” published online May 12, was selected by The Journal of Biological Chemistry as a “Paper of the Week” to appear in the July 15 print issue. The distinction is bestowed by the publication’s editorial board members and associate editors to papers that represent the top 1 percent of papers reviewed in terms of significance and overall importance.

Authors on the paper are from USC Dornsife and include Phuong Pham, assistant professor (research) of biological sciences; Calabrese, assistant professor (research) of biological sciences; Goodman, professor of biological sciences and chemistry; and Soo Jung Park, research assistant. The National Institutes of Health funded the study.

Michelle Salzman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>