Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics of cancer cells: Computational models to sort out the chaos

30.10.2015

Scientists of the Luxembourg Centre for Systems Biomedicine of the University of Luxembourg have developed a method for analysing the genome of cancer cells more precisely than ever before. The team led by Prof. Antonio del Sol, head of the research group Computational Biology, is employing bioinformatics: Using novel computing processes, the researchers have created models of the genome of cancer cells based on known changes to the genome. These models are useful for determining the structure of DNA in tumours.

“If we know this structure, we can study how cancer develops and spreads,” says del Sol. “This gives us clues about possible starting points for developing new anticancer drugs and better individual therapy for cancer patients.” The LCSB researchers recently published their results in the scientific journal “Nucleic Acids Research” (DOI: 10.1093/nar/gkv828).

“The cause of cancers are changes in the DNA,” says Sarah Killcoyne, who is doing her PhD at the University of Luxembourg and whose doctoral thesis is a core component of the research project. “Mutations arise, the chromosomes can break or reassemble themselves in the wrong order, or parts of the DNA can be lost,” Killcoyne describes the cellular catastrophe:

“In the worst case, the genome becomes completely chaotic.” The cells affected become incapable of performing their function in the body and – perhaps even worse – multiply perpetually. The result is cancer.

If we are to develop new anticancer drugs and provide personalised therapy, it is important to know the structure of DNA in cancer cells. Oncologists and scientists have isolated chromosomes from tumours and analysed them under the microscope for decades. They found that irregularities in the chromosome structure sometimes indicated the type of cancer and the corresponding therapy.

“Sequencing technologies have made the identification of many mutations more accurate, significantly improving our understanding of cancer,” Sarah Killcoyne says. “But it has been far more difficult to use these technologies for understanding the chaotic structural changes in the genome of cancer cells.”

This is because sequencing machines only deliver data about very short DNA fragments. In order to reconstruct the genome, scientists accordingly need a reference sequence – a kind of template against which to piece together the puzzle of the sequenced genome. Killcoyne continues:

“The reference sequence gives us clues to where the fragments overlap and in what order they belong together.” Since the gene sequence in cancer cells is in complete disarray, logically, there is no single reference sequence. “We developed multiple references instead,” says Sarah Killcoyne. “We applied statistical methods for our new bioinformatics approach, to generate models, or references, of chaotic genomes and to determine if they actually show us the structural changes in a tumour genome.”

These methods are of double importance to group leader del Sol, as he states: “Firstly, Sarah Killcoyne’s work is important for cancer research. After all, such models can be used to investigate the causes of genetic and molecular processes in cancer research and to develop new therapeutic approaches.

Secondly, we are interested in bioinformatics model development for reapplying it to other diseases that have complex genetic causes – such as neurodegenerative diseases like Parkinson’s. Here, too we want to better understand the relationships between genetic mutations and the resulting metabolic processes. After all, new approaches for diagnosing and treating neurodegenerative diseases are an important aim at the Luxembourg Centre for Systems Biomedicine.”

Weitere Informationen:

http://orbilu.uni.lu/handle/10993/22054 - Link to the scientific publication
http://wwwen.uni.lu/lcsb - Link to the Luxembourg Centre for Systems Biomedicine
http://wwwen.uni.lu/lcsb/people/antonio_del_sol_mesa - Link to personal page of Prof. del Sol

Britta Schlüter | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>