Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics of cancer cells: Computational models to sort out the chaos

30.10.2015

Scientists of the Luxembourg Centre for Systems Biomedicine of the University of Luxembourg have developed a method for analysing the genome of cancer cells more precisely than ever before. The team led by Prof. Antonio del Sol, head of the research group Computational Biology, is employing bioinformatics: Using novel computing processes, the researchers have created models of the genome of cancer cells based on known changes to the genome. These models are useful for determining the structure of DNA in tumours.

“If we know this structure, we can study how cancer develops and spreads,” says del Sol. “This gives us clues about possible starting points for developing new anticancer drugs and better individual therapy for cancer patients.” The LCSB researchers recently published their results in the scientific journal “Nucleic Acids Research” (DOI: 10.1093/nar/gkv828).

“The cause of cancers are changes in the DNA,” says Sarah Killcoyne, who is doing her PhD at the University of Luxembourg and whose doctoral thesis is a core component of the research project. “Mutations arise, the chromosomes can break or reassemble themselves in the wrong order, or parts of the DNA can be lost,” Killcoyne describes the cellular catastrophe:

“In the worst case, the genome becomes completely chaotic.” The cells affected become incapable of performing their function in the body and – perhaps even worse – multiply perpetually. The result is cancer.

If we are to develop new anticancer drugs and provide personalised therapy, it is important to know the structure of DNA in cancer cells. Oncologists and scientists have isolated chromosomes from tumours and analysed them under the microscope for decades. They found that irregularities in the chromosome structure sometimes indicated the type of cancer and the corresponding therapy.

“Sequencing technologies have made the identification of many mutations more accurate, significantly improving our understanding of cancer,” Sarah Killcoyne says. “But it has been far more difficult to use these technologies for understanding the chaotic structural changes in the genome of cancer cells.”

This is because sequencing machines only deliver data about very short DNA fragments. In order to reconstruct the genome, scientists accordingly need a reference sequence – a kind of template against which to piece together the puzzle of the sequenced genome. Killcoyne continues:

“The reference sequence gives us clues to where the fragments overlap and in what order they belong together.” Since the gene sequence in cancer cells is in complete disarray, logically, there is no single reference sequence. “We developed multiple references instead,” says Sarah Killcoyne. “We applied statistical methods for our new bioinformatics approach, to generate models, or references, of chaotic genomes and to determine if they actually show us the structural changes in a tumour genome.”

These methods are of double importance to group leader del Sol, as he states: “Firstly, Sarah Killcoyne’s work is important for cancer research. After all, such models can be used to investigate the causes of genetic and molecular processes in cancer research and to develop new therapeutic approaches.

Secondly, we are interested in bioinformatics model development for reapplying it to other diseases that have complex genetic causes – such as neurodegenerative diseases like Parkinson’s. Here, too we want to better understand the relationships between genetic mutations and the resulting metabolic processes. After all, new approaches for diagnosing and treating neurodegenerative diseases are an important aim at the Luxembourg Centre for Systems Biomedicine.”

Weitere Informationen:

http://orbilu.uni.lu/handle/10993/22054 - Link to the scientific publication
http://wwwen.uni.lu/lcsb - Link to the Luxembourg Centre for Systems Biomedicine
http://wwwen.uni.lu/lcsb/people/antonio_del_sol_mesa - Link to personal page of Prof. del Sol

Britta Schlüter | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>