Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics of cancer cells: Computational models to sort out the chaos

30.10.2015

Scientists of the Luxembourg Centre for Systems Biomedicine of the University of Luxembourg have developed a method for analysing the genome of cancer cells more precisely than ever before. The team led by Prof. Antonio del Sol, head of the research group Computational Biology, is employing bioinformatics: Using novel computing processes, the researchers have created models of the genome of cancer cells based on known changes to the genome. These models are useful for determining the structure of DNA in tumours.

“If we know this structure, we can study how cancer develops and spreads,” says del Sol. “This gives us clues about possible starting points for developing new anticancer drugs and better individual therapy for cancer patients.” The LCSB researchers recently published their results in the scientific journal “Nucleic Acids Research” (DOI: 10.1093/nar/gkv828).

“The cause of cancers are changes in the DNA,” says Sarah Killcoyne, who is doing her PhD at the University of Luxembourg and whose doctoral thesis is a core component of the research project. “Mutations arise, the chromosomes can break or reassemble themselves in the wrong order, or parts of the DNA can be lost,” Killcoyne describes the cellular catastrophe:

“In the worst case, the genome becomes completely chaotic.” The cells affected become incapable of performing their function in the body and – perhaps even worse – multiply perpetually. The result is cancer.

If we are to develop new anticancer drugs and provide personalised therapy, it is important to know the structure of DNA in cancer cells. Oncologists and scientists have isolated chromosomes from tumours and analysed them under the microscope for decades. They found that irregularities in the chromosome structure sometimes indicated the type of cancer and the corresponding therapy.

“Sequencing technologies have made the identification of many mutations more accurate, significantly improving our understanding of cancer,” Sarah Killcoyne says. “But it has been far more difficult to use these technologies for understanding the chaotic structural changes in the genome of cancer cells.”

This is because sequencing machines only deliver data about very short DNA fragments. In order to reconstruct the genome, scientists accordingly need a reference sequence – a kind of template against which to piece together the puzzle of the sequenced genome. Killcoyne continues:

“The reference sequence gives us clues to where the fragments overlap and in what order they belong together.” Since the gene sequence in cancer cells is in complete disarray, logically, there is no single reference sequence. “We developed multiple references instead,” says Sarah Killcoyne. “We applied statistical methods for our new bioinformatics approach, to generate models, or references, of chaotic genomes and to determine if they actually show us the structural changes in a tumour genome.”

These methods are of double importance to group leader del Sol, as he states: “Firstly, Sarah Killcoyne’s work is important for cancer research. After all, such models can be used to investigate the causes of genetic and molecular processes in cancer research and to develop new therapeutic approaches.

Secondly, we are interested in bioinformatics model development for reapplying it to other diseases that have complex genetic causes – such as neurodegenerative diseases like Parkinson’s. Here, too we want to better understand the relationships between genetic mutations and the resulting metabolic processes. After all, new approaches for diagnosing and treating neurodegenerative diseases are an important aim at the Luxembourg Centre for Systems Biomedicine.”

Weitere Informationen:

http://orbilu.uni.lu/handle/10993/22054 - Link to the scientific publication
http://wwwen.uni.lu/lcsb - Link to the Luxembourg Centre for Systems Biomedicine
http://wwwen.uni.lu/lcsb/people/antonio_del_sol_mesa - Link to personal page of Prof. del Sol

Britta Schlüter | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>