Genetics of melanoma chemoresistance

While cellular senescence has been thought of as a natural mechanism to combat uncontrolled cell growth, or cancer, recent studies have shown that some cell types express a secretome during senescence that alters the tumor microenvironment and affects the cell's response to chemotherapeutic drugs.

Ohanna et al. confirm that senescent melanoma cells do, in fact, express an inflammatory secretome, and have delineated the genetic pathways involved: Depletion of the MITF transcription factor, or exposure to anti-melanoma drugs, activates the DNA damage response and triggers senescence. Senescent melanoma cells express a PARP-1 and NF-kB—associated secretome, which contains high levels of the chemokine CCL2. CCL2, in turn, leads to a loss of E-cadherin expression and an invasive phenotype.

In fact, Ohanna et al. show that culturing melanoma cells with exogenous CCL2 enhances their survival and invasiveness. This finding suggests that blocking CCL2, or its upstream effectors, may represent a novel therapeutic pathway. As Dr. Bertolotto explains, “Our data disclose a part of the mechanisms contributory to failure of anti-melanoma chemotherapies and we gain valuable insight for the identification of new candidates, namely PARP-1, NF-kB or CCL2, for therapeutic intervention in view to overcome drug resistance.”

Media Contact

Heather Cosel EurekAlert!

More Information:

http://www.cshl.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors