Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Although our genetics differ significantly, we all look alike...

27.01.2009
The genetic variation within a species can be significant, but very little of that variation results in clear differences in morphology or other phenotypes.

Much of the diversity remains hidden ‘under the surface’ in buffered form. This has been revealed by research conducted by the University of Groningen, Wageningen University and Research Centre (both Netherlands) and the British research centre Rothamsted Research. The research was published on 25 January 2009 in Nature Genetics.

The researchers crossed two ecotypes of Arabidopsis and investigated the offspring for molecular and phenotypic differences, for example the number of proteins and metabolites that are formed and susceptibility to disease. It turned out that of the hundreds of thousands of differences in the DNA, only six ‘hotspots’ had major molecular and phenotypic effects.

Variation
The DNA of the two crossed ecotypes of Arabidopsis thaliana, a small plant that serves as a model organism in genetic research, differs on no fewer than 500,000 points, i.e. there is significant genetic variation. Of the offspring of the crossbreeding, 162 plants were investigated on 139 external characteristics (classic phenotypic traits such as the height of the plant, flowering time or resistance to disease) and 40,000 molecular traits. The latter category covers the products of the genes, i.e. the transcripts and proteins formed in the plant cell and the healthy or toxic compounds (metabolites) that these proteins generate in their turn. Many of these traits show substantial phenotypic variation.
Clusters
Research leader Prof. Ritsert Jansen: ‘You’d expect the mutations – the genetic causes of these phenotypic differences – to be evenly divided over the DNA, that they would be spread out over the whole genome, in a manner of speaking. This was clearly not the case in this experiment. We could point out exactly six areas in the genome where the genetic causes of thousands of differences were located. In other words, the genetic causes turned out to be clustered into six hotspots. The other 500,000 mutations in the genome only had a relatively very minor influence.’
Buffering
As described in the publication, this is a type of buffering – the 500,000 genetic differences do influence the activity of thousands of genes, but that diversity gradually diminishes the further you move away from the genetic source, the DNA; it is buffered. Eventually, only a small number of hotspots remain and these cause phenotypic differences at the highest levels, in metabolites and classic phenotypic traits. ‘The genetic variation is significantly present deep in the cell but is muffled more and more the further you move towards the outside’, Jansen explains.
Evolution
Although buffering has a muffling effect on the evolution of a species, it certainly does not hinder it. Jansen: ‘I’d say that it’s lucky there’s buffering. Just imagine if each of the 500,000 differences was immediately expressed in the next generation. From the point of view of the “robustness” of a species, it’s necessary that the offspring do not vary too dramatically. But if there’s a change in the environment that requires an evolutionary adaptation, then the necessary genetic variation is ready and waiting.’
Hotspots
The discovery means that life scientists should in particular examine the hotspots in the genome when searching for the causes of genetic disorders. In that regard the results of the current research agree with the results of Prof. Cisca Wijmenga of the University Medical Center Groningen, which was published in Nature Reviews Genetics in December. Her research revealed that only a limited number of hotspot genes are involved in the development of numerous immune-related diseases, such as type 1 diabetes, coeliac disease, Crohn’s disease and rheumatoid arthritis. Just like Arabidopsis, people differ from each other in millions of positions in their genome, but it’s the genotype in the hotspots that is the most relevant. ‘When it comes down to it, we are more similar to each other than the major differences in genome sequences suggest.’

Jos Speekman | alfa
Further information:
http://www.rug.nl

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>