Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Although our genetics differ significantly, we all look alike...

27.01.2009
The genetic variation within a species can be significant, but very little of that variation results in clear differences in morphology or other phenotypes.

Much of the diversity remains hidden ‘under the surface’ in buffered form. This has been revealed by research conducted by the University of Groningen, Wageningen University and Research Centre (both Netherlands) and the British research centre Rothamsted Research. The research was published on 25 January 2009 in Nature Genetics.

The researchers crossed two ecotypes of Arabidopsis and investigated the offspring for molecular and phenotypic differences, for example the number of proteins and metabolites that are formed and susceptibility to disease. It turned out that of the hundreds of thousands of differences in the DNA, only six ‘hotspots’ had major molecular and phenotypic effects.

Variation
The DNA of the two crossed ecotypes of Arabidopsis thaliana, a small plant that serves as a model organism in genetic research, differs on no fewer than 500,000 points, i.e. there is significant genetic variation. Of the offspring of the crossbreeding, 162 plants were investigated on 139 external characteristics (classic phenotypic traits such as the height of the plant, flowering time or resistance to disease) and 40,000 molecular traits. The latter category covers the products of the genes, i.e. the transcripts and proteins formed in the plant cell and the healthy or toxic compounds (metabolites) that these proteins generate in their turn. Many of these traits show substantial phenotypic variation.
Clusters
Research leader Prof. Ritsert Jansen: ‘You’d expect the mutations – the genetic causes of these phenotypic differences – to be evenly divided over the DNA, that they would be spread out over the whole genome, in a manner of speaking. This was clearly not the case in this experiment. We could point out exactly six areas in the genome where the genetic causes of thousands of differences were located. In other words, the genetic causes turned out to be clustered into six hotspots. The other 500,000 mutations in the genome only had a relatively very minor influence.’
Buffering
As described in the publication, this is a type of buffering – the 500,000 genetic differences do influence the activity of thousands of genes, but that diversity gradually diminishes the further you move away from the genetic source, the DNA; it is buffered. Eventually, only a small number of hotspots remain and these cause phenotypic differences at the highest levels, in metabolites and classic phenotypic traits. ‘The genetic variation is significantly present deep in the cell but is muffled more and more the further you move towards the outside’, Jansen explains.
Evolution
Although buffering has a muffling effect on the evolution of a species, it certainly does not hinder it. Jansen: ‘I’d say that it’s lucky there’s buffering. Just imagine if each of the 500,000 differences was immediately expressed in the next generation. From the point of view of the “robustness” of a species, it’s necessary that the offspring do not vary too dramatically. But if there’s a change in the environment that requires an evolutionary adaptation, then the necessary genetic variation is ready and waiting.’
Hotspots
The discovery means that life scientists should in particular examine the hotspots in the genome when searching for the causes of genetic disorders. In that regard the results of the current research agree with the results of Prof. Cisca Wijmenga of the University Medical Center Groningen, which was published in Nature Reviews Genetics in December. Her research revealed that only a limited number of hotspot genes are involved in the development of numerous immune-related diseases, such as type 1 diabetes, coeliac disease, Crohn’s disease and rheumatoid arthritis. Just like Arabidopsis, people differ from each other in millions of positions in their genome, but it’s the genotype in the hotspots that is the most relevant. ‘When it comes down to it, we are more similar to each other than the major differences in genome sequences suggest.’

Jos Speekman | alfa
Further information:
http://www.rug.nl

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>