Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics: More than merely a mutated gene

02.08.2013
If two women have the same genetic mutation that puts them at higher-than-average risk for a disease such as breast cancer, why does only one develop the disease?

In the current issue of PLOS Genetics, Michigan State University genetic scientists have begun to understand how the rest of the genome interacts with such mutations to cause the differences we see among individuals.

"It's been known for a while that genetic mutations can modify each other's effects," said Ian Dworkin, MSU associate professor of zoology and co-author of the paper. "And we also know that the subtle differences in an individual's genome – what scientists call wild type genetic background – also affects how mutations are manifested."

Dworkin and Sudarshan Chari, zoology doctoral student and the paper's lead author, wanted to know how common it was for wild type genetic background to alter the way genetic mutations interact with each other. This is the first time that it's been examined in a systematic manner, Dworkin added.

Using the fruit fly genome, the researchers found that wild type genetic background affected the outcomes of interactions between genetic mutations about 75 percent of the time. This could have huge implications in how scientists construct genetic networks – maps of how genes interact with each other.

"It may be that some crucial portions of genetic networks are missing," he said. "It also seems that network descriptions are more fluid than we thought."

Fruit flies have been called humans with wings, genetically speaking, due to their similarities. By focusing on wings and a genetic mutation that alters them, the researchers demonstrated the influence of wild type genetic background was actually quite common.

The broader implication for humans is that even for diseases with a simple genetic basis, variation in the genome may matter for both understanding and treatment, Dworkin said.

This new insight explains how, in an example like breast cancer, every woman's genetic background is likely influencing how the mutation is expressed, causing different disease outcomes. The research also may help explain why some people benefit from a specific treatment for a disease, while others get no benefits or become resistant to a drug after a short time.

It's likely that most diseases with a suspected genetic component, such as cancer, asthma or Parkinson's, involve reactions between more than one set of genes. For Dworkin and Chari, the next step is to tease apart the intricacies of what's happening.

"Is it just the two pairs of genes that are interacting?" Dworkin asked. "Or is it that the two genes are interacting and then many other genes are modifying that reaction? This will help us understand how much complexity is involved."

The research is funded by the National Science Foundation grant number MCB 0922344.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>