Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics: More than merely a mutated gene

02.08.2013
If two women have the same genetic mutation that puts them at higher-than-average risk for a disease such as breast cancer, why does only one develop the disease?

In the current issue of PLOS Genetics, Michigan State University genetic scientists have begun to understand how the rest of the genome interacts with such mutations to cause the differences we see among individuals.

"It's been known for a while that genetic mutations can modify each other's effects," said Ian Dworkin, MSU associate professor of zoology and co-author of the paper. "And we also know that the subtle differences in an individual's genome – what scientists call wild type genetic background – also affects how mutations are manifested."

Dworkin and Sudarshan Chari, zoology doctoral student and the paper's lead author, wanted to know how common it was for wild type genetic background to alter the way genetic mutations interact with each other. This is the first time that it's been examined in a systematic manner, Dworkin added.

Using the fruit fly genome, the researchers found that wild type genetic background affected the outcomes of interactions between genetic mutations about 75 percent of the time. This could have huge implications in how scientists construct genetic networks – maps of how genes interact with each other.

"It may be that some crucial portions of genetic networks are missing," he said. "It also seems that network descriptions are more fluid than we thought."

Fruit flies have been called humans with wings, genetically speaking, due to their similarities. By focusing on wings and a genetic mutation that alters them, the researchers demonstrated the influence of wild type genetic background was actually quite common.

The broader implication for humans is that even for diseases with a simple genetic basis, variation in the genome may matter for both understanding and treatment, Dworkin said.

This new insight explains how, in an example like breast cancer, every woman's genetic background is likely influencing how the mutation is expressed, causing different disease outcomes. The research also may help explain why some people benefit from a specific treatment for a disease, while others get no benefits or become resistant to a drug after a short time.

It's likely that most diseases with a suspected genetic component, such as cancer, asthma or Parkinson's, involve reactions between more than one set of genes. For Dworkin and Chari, the next step is to tease apart the intricacies of what's happening.

"Is it just the two pairs of genes that are interacting?" Dworkin asked. "Or is it that the two genes are interacting and then many other genes are modifying that reaction? This will help us understand how much complexity is involved."

The research is funded by the National Science Foundation grant number MCB 0922344.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>