Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetically Engineered Bacteria Prevent Mosquitoes From Transmitting Malaria

17.07.2012
Researchers at the Johns Hopkins Malaria Research Institute have genetically modified a bacterium commonly found in the mosquito’s midgut and found that the parasite that causes malaria in people does not survive in mosquitoes carrying the modified bacterium.

The bacterium, Pantoea agglomerans, was modified to secrete proteins toxic to the malaria parasite, but the toxins do not harm the mosquito or humans. According to a study published by PNAS, the modified bacteria were 98 percent effective in reducing the malaria parasite burden in mosquitoes.


Johns Hopkins Malaria Research Institute
Genetically engineered bacteria glow fluorescent green inside mosquito.

“In the past, we worked to genetically modify the mosquito to resist malaria, but genetic modification of bacteria is a simpler approach,” said Marcelo Jacobs-Lorena, PhD, senior author of the study and a professor with Johns Hopkins Bloomberg School of Public Health. “The ultimate goal is to completely prevent the mosquito from spreading the malaria parasite to people.”

With the study, Jacobs-Lorena and his colleagues found that the engineered P. agglomerans strains inhibited development of the deadliest human malaria parasite Plasmodium falciparum and rodent malaria parasite Plasmodium berghei by up to 98 percent within the mosquito. The proportion of mosquitoes carrying parasites (prevalence) decreased by up to 84 percent.

“We demonstrate the use of an engineered symbiotic bacterium to interfere with the development of P. falciparum in the mosquito. These findings provide the foundation for the use of genetically modified symbiotic bacteria as a powerful tool to combat malaria,” said Jacobs-Lorena.

Malaria kills more than 800,000 people worldwide each year. Many are children.

The authors of “Fighting malaria with engineered symbiotic bacteria from vector mosquitoes” are Sibao Wang, Anil K. Ghosh, Nicholas Bongio, Kevin A. Stebbings, David J. Lampe and Marcelo Jacobs-Lorena.

The research was supported by National Institute of Allergy and Infectious Diseases, the Bill & Melinda Gates Foundation, the Johns Hopkins Malaria Research Institute and the Bloomberg Family Foundation.

Follow the Johns Hopkins Bloomberg School of Public Health on Facebook at http://www.facebook.com/JohnsHopkinsSPH and Twitter at http://www.twitter.com/JohnsHopkinsSPH.

Tim Parsons
410-955-7619
tmparson@jhsph.edu

Tim Parsons | Newswise Science News
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>