Genetic Variation in Human Gut Viruses Could be Raw Material for Inner Evolution

Yet bacteria are only part of the story. Viruses that infect those bacteria also shape who we are. Frederic D. Bushman, PhD, professor of Microbiology at the Perelman School of Medicine at the University of Pennsylvania, led a study published this month in the Proceedings of the National Academy of Sciences that sequenced the DNA of viruses — the virome — present in the gut of healthy people.

Nearly 48 billion bases of DNA, the genetic building blocks, were collected in the stools of 12 individuals. The researchers then assembled the blocks like puzzle pieces to recreate whole virus genomes. Hundreds to thousands of likely distinct viruses were assembled per individual, of which all but one type were bacteriophages — viruses that infect bacteria — which the team expected. The other was a human pathogen, a human papillomavirus found in a single individual. Bacteriophages are responsible for the toxic effects of many bacteria, but their role in the human microbiome has only recently started to be studied.

To assess variability in the viral populations among the 12 individuals studied, Bushman's team, led by graduate student Samuel Minot, looked for stretches of bases that varied the most.

Their survey identified 51 hypervariable regions among the 12 people studied, which, to the team's surprise, were associated with reverse transcriptase genes. Reverse transcriptase enzymes, more commonly associated with replication of retroviruses such as HIV, copy RNA into DNA. Of the 51 regions, 29 bore sequence and structural similarity to one well-studied reverse transcriptase, a hypervariable region in the Bordetella bacteriophage BPP-1. Bordetella is the microbe that causes kennel cough in dogs.

BPP-1 uses reverse transcriptase and an error-prone copying mechanism to modify a protein to aid in entering and reproducing in a wide array of viral targets. Bushman and colleagues speculate that the newly discovered hypervariable regions could serve a similar function in the human virome, and microbiome, by extension.

“It appears there's natural selective pressure for rapid variation for these classes of bacteriophages, which implies there's a corresponding rapidly changing environmental factor that the phage must be able to quickly adapt to,” says Minot. Possible reasons for change, say the authors, include evading the immune system and keeping abreast of ever-evolving bacterial hosts — a kind of mutation-based host-pathogen arms race. Whatever the case, Minot says, such variability may be helping to drive evolution of the gut microbiome: “The substrate of evolution is mutation.”

Evolutionary analysis of the 185 reverse transcriptases discovered in this study population suggests that a large fraction of these enzymes are primarily involved in generating diversity. Now, Minot says, the challenge is to determine the function of the newly discovered hypervariable regions, and understand how their variability changes over time and in relationship to disease.

“This method opens a whole new world of 'diversity-generating' biology to discover what these clearly important systems are actually doing,” he says.

In addition to Bushman and Minot, co-authors are Stephanie Grunberg (Department of Microbiology); Gary Wu (Division of Gastroenterology); and James Lewis (Department of Biostatistics and Epidemiology), all from Penn.

The research was supported by grants from the National Institutes of Health, Pennsylvania Department of Health, and the Crohn's and Colitis Foundation of America.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania — recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Media Contact

Karen Kreeger EurekAlert!

More Information:

http://www.uphs.upenn.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors