Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Variation in Human Gut Viruses Could be Raw Material for Inner Evolution

20.03.2012
A growing body of evidence underscores the importance of human gut bacteria in modulating human health, metabolism, and disease.

Yet bacteria are only part of the story. Viruses that infect those bacteria also shape who we are. Frederic D. Bushman, PhD, professor of Microbiology at the Perelman School of Medicine at the University of Pennsylvania, led a study published this month in the Proceedings of the National Academy of Sciences that sequenced the DNA of viruses -- the virome -- present in the gut of healthy people.

Nearly 48 billion bases of DNA, the genetic building blocks, were collected in the stools of 12 individuals. The researchers then assembled the blocks like puzzle pieces to recreate whole virus genomes. Hundreds to thousands of likely distinct viruses were assembled per individual, of which all but one type were bacteriophages — viruses that infect bacteria -- which the team expected. The other was a human pathogen, a human papillomavirus found in a single individual. Bacteriophages are responsible for the toxic effects of many bacteria, but their role in the human microbiome has only recently started to be studied.

To assess variability in the viral populations among the 12 individuals studied, Bushman's team, led by graduate student Samuel Minot, looked for stretches of bases that varied the most.

Their survey identified 51 hypervariable regions among the 12 people studied, which, to the team's surprise, were associated with reverse transcriptase genes. Reverse transcriptase enzymes, more commonly associated with replication of retroviruses such as HIV, copy RNA into DNA. Of the 51 regions, 29 bore sequence and structural similarity to one well-studied reverse transcriptase, a hypervariable region in the Bordetella bacteriophage BPP-1. Bordetella is the microbe that causes kennel cough in dogs.

BPP-1 uses reverse transcriptase and an error-prone copying mechanism to modify a protein to aid in entering and reproducing in a wide array of viral targets. Bushman and colleagues speculate that the newly discovered hypervariable regions could serve a similar function in the human virome, and microbiome, by extension.

"It appears there's natural selective pressure for rapid variation for these classes of bacteriophages, which implies there's a corresponding rapidly changing environmental factor that the phage must be able to quickly adapt to," says Minot. Possible reasons for change, say the authors, include evading the immune system and keeping abreast of ever-evolving bacterial hosts — a kind of mutation-based host-pathogen arms race. Whatever the case, Minot says, such variability may be helping to drive evolution of the gut microbiome: "The substrate of evolution is mutation."

Evolutionary analysis of the 185 reverse transcriptases discovered in this study population suggests that a large fraction of these enzymes are primarily involved in generating diversity. Now, Minot says, the challenge is to determine the function of the newly discovered hypervariable regions, and understand how their variability changes over time and in relationship to disease.

"This method opens a whole new world of 'diversity-generating' biology to discover what these clearly important systems are actually doing," he says.

In addition to Bushman and Minot, co-authors are Stephanie Grunberg (Department of Microbiology); Gary Wu (Division of Gastroenterology); and James Lewis (Department of Biostatistics and Epidemiology), all from Penn.

The research was supported by grants from the National Institutes of Health, Pennsylvania Department of Health, and the Crohn's and Colitis Foundation of America.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>